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EINSTEIN 1915

Classical spacetime <— Lorentzian manifold

o globally hyperbolic spacetime: M =R x ¥ with metric g = —(2dt? + h;
o classical fields: section of a vector bundle E — M

o dynamics: (pseudo)-differential (hyperbolic) operator P : [(E) — I'(E)
When the Cauchy problem for P is well-posed?

oY =0: CLASSICAL RESULTS --- (Hadamard; Leray; Hérmander; Friederich, ...)
oY # 0: DEPENDS ON THE BOUNDARY CONDITIONS

GOAL: study the Cauchy problem for Friedrichs systems

. and on the menu of the day we have:
Wave equation - --  Dirac equation - --  Klein-Gordon equation

but also  Diffusion-Reaction equations (e.g. the Heat equation)
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Outline of the Talk

o Geometric Preliminaries

e Friedrichs Systems of constant characteristic
e Admissible Boundary conditions

e Energy estimates

e Existence and uniqueness of strong solutions
e Differentiability of the solutions

e QOutlook

Based on

S. M. and N. Ginoux “On the Cauchy problem for Friedrichs systems on globally
hyperbolic manifolds with timelike boundary” arXiv:2007.02544
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Geometric Preliminaries

Geometric preliminaries

- M is connected, time-oriented, oriented smooth manifold with smooth boundary &M

- g is Lorentzian metric and OM is timelike

Few important definitions

- Temporal function: t € C*°(M,R) strictly increasing on future directed causal curve
and V't is timelike everywhere and past-pointing

- Cauchy hypersurface X: if each inextendible timelike curve y N X = {pt}

- Globally hyperbolic: M strongly causal and Vp,q € M,J*(p) N J~(q) compact

Bernal and Sanchez (2005) — Aké, Flores and Sanchez (2019):
M is globally hyperbolic (with timelike boundary)

i

Exists a Cauchy temporal function (t~1(s) := ¥s is a Cauchy) and Vt € TOM

I
M isometric to R x ¥ with metric —32dt? + h;, where 8 € C*=(M, (0, c0))
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Friedrichs systems of constant characteristic
- E — M be a K-vector bundle with finite rank N and sesquilinear fiber metric < - |- >
Definition: a 1%t order S is called symmetric system if
(S) os(§): Ep — Ep is Hermitian with respect to < -|- =, V§ € TyM and Vp € M.

Additionally, we say that S is hyperbolic respectively positive if it holds:
(H) < os(7)- |- > is positive definite on Ep, for any future-directed timelike 7 € Ty M

(P) ¢ =< Re(ST+S)p| ¢ =5,> ct < | ¢ =5,€ CO(R) with ¢; > 0.

We call Friedrichs system, any symmetric system S which is hyperbolic or positive.

If dim ker o5(n”) is constant then S is of constant characteristic (where n L OM).

Example: E = CVN x [0,00) x R” = ([0,00) X R", 1) with < | == (| )ewn
n
S = Ao(P)d: + Y _ Ai(p)dy + B(p)
=i
(S) Ao = A}, A = Al (H) os(dt +> " ajdxj) = Ao + > ajA; > 0.
J Jj=1
d A D Oy Aj
(P) e(B + BT — 2VEA) 5~ 5 (VEA),
VE & e
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Friedrichs systems of constant characteristic

Basic Properties

Lemma: If < -|: > is indefinite and S is a symmetric hyperbolic system
(1) (-|) :=< os(dt) - |- > is positive Hermitian metric;
(I) & = as(dt)~1S . is symmetric hyperbolic system

(1) Cauchy problem (&) <= Cauchy problem (S) set: (as(dt)*lf, h) < (F, b))

v
Lemma: If S is a symmetric hyperbolic system in Mt := t=*(to, t1)
(1) & := S + Xos(dt) is symmetric hyperbolic system
6V =F SV =j
Vg, = = Vg, =b
veB VeB,
where f = e f, h = h and W = e~ W,
() V U C M compact, 3 XA = A(U) such that & is a positive symmetric system
V.
Lemma: If S is a symmetric system, we have a Green Formula
(Green Formula) (S®|®)y — (®[ST)y = (¢ ]os(n”)P)om
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Friedrichs systems of constant characteristic

Example I: The classical Dirac operator

- M= (M,g) is a globally hyperbolic spin manifold with timelike boundary;

- SM is a spinor bundle: C-vector bundle with indefinite sesquilinear metric
<] >:SpM x SpM — C
and a Clifford multiplication, i.e. fiber-preserving map v: TM — End(SM)

Dirac operator: D := v 0 VS: [(SM) — '(SM) which in local coordinates reads

D=3 cunlen) ¥,
n=0

- (eu)p=0,...,n is a local orthonormal Lorentzian frame of TM and ¢, := g(ey, ey)

- y(u)y(v) + y(v)v(u) = —2g(u, v) for every u,v € ToM and p € M.

Remarks:
(i) Topological obstruction to existence of a spinor bundle;
(ii) Existence of spinor bundles on parallelizable manifolds;

(iii) D is nowhere characteristic.
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Friedrichs systems of constant characteristic

Example II: The geometric wave operator

-M is a globally hyperbolic with timelike boundary and g = —32dt? + h; ;
- V be an Hermitian vector bundle of finite rank;

- P is a normally hyperbolic operator i.e. P = —tr(VV) + ¢ and principal symbol
op(¢) = —g(¢",€") - 1dy,  forevery € T*M.

A normally hyperbolic operator P can be rewritten as SYMM. HYPERBOLIC SYST.

S:= (AoVa, + As VT + C)

Vo, u Biz 0 0 0 —trp O
V.= | Viy Av=[0 1 o0 Ar = | -1 0 0 C= < suitable)
u 0 0 1 0 0 0
Remarks:

(i) Cauchy problem (P) <= Cauchy problem (S);

(i) S is of constant characteristic:

0 —n’, 0
os(’)=| —n’® 0 0
0 0 0
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Friedrichs systems of constant characteristic

Example Il and IV: The Klein-Gordon operator and the Heat operator

-M = (M, g) is a globally hyperbolic spin manifold with timelike boundary;
- P is the Klein-Gordon operator i.e. P = —tr(VV) + m?

The Klein-Gordon operator P can be rewritten as SYMM. POSITIVE SYST.

(0 —tr m? 0 . [ u
S—(_l 0 )V+(O 1> with w_<Vu)
- H is the Forward Heat operator i.e. H= Vp, — tr(V=VZ)

- Hy is the Backward Heat operator i.e. H=Vp, + tr(VEVT)

The H and Hp can be rewritten as a SYMM. POSITIVE SYST.
= (10 0 +t\or (A O . [ u
Sy = (0 o) Vo, + (71 0 ) 7 (0 1) with W= (vfu)

Remarks:
(i) Cauchy pr. (P) <= Cauchy pr. (S) and Cauchy pr. (H) <= Cauchy pr. (S,)

(i) S and S are of nowhere characteristic

0 b
os(n’) = ( e EJ )
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Boundary conditions

Admissible boundary conditions
Definition [Friedrichs]: A boundary space B4y, for S is called admissible if
- The quadratic form ¥ +—< as(nb)\ll | W > is positive semi-definite on B,gm;

- rank B,gm = # pointwise non-negative eigenvalues of as(nb) counting multiplicity.

Remarks:
(i) The adjoint boundary space is defined by Bidm = (O’s(nb)(Badm))J—, i.e.
{® € [(E|am) | for any W € Bogp, it holds < os(n”)W | ® == 0}.
T

adm

(i) ® == os(n”)® |V = is negative semi-definite on B
Examples for classical Dirac operators:
Lorentzian MIT boundary space is the range of 7o := % (Id £ +y(n))

< op(@”)mMrT Y | MY = =< ()T | Ty == 0 < v | Ty == 0

Riemannian MIT boundary space is the range of TRjem = % (Id — %’y(n)’y((’)t))
< 0p(0")TRiem ¥ | TRiem ¥ = == V(1) TRiem ¥ | TRiem ¥ >
= 5 <O i | Triemt =2 0
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Boundary conditions

Admissible boundary conditions
Definition [Friedrichs]: A boundary space B4y, for S is called admissible if
- The quadratic form ¥ +—< as(nb)\ll | W > is positive semi-definite on B,gm;

- rank B,gm = # pointwise non-negative eigenvalues of as(nb) counting multiplicity.

Remarks:
(i) The adjoint boundary space is defined by Bidm = (O’s(nb)(Badm))J—, i.e.
{® € [(E|am) | for any W € Bogp, it holds < os(n”)W | ® == 0}.
T

adm

(i) ® == os(n”)® |V = is negative semi-definite on B

Examples for geometric wave operator:

0 ny O
Neumann like-boundary condition: VEXu=0 => BN, =ker| 0 0 0
0 0 O
b n, 0
Transparent boundary condition: Vfu = —bVy,u = B;rd'm = ker 0o 0 O
0 0 O

Examples for the Klein-Gordon operator and Heat operator:

Robin like-boundary condition: aVau=bu — Bgvdm = ker (Bb QSJ)
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The Cauchy problem

Theorem: there exists a unique strong solution for the Cauchy problem if
- Mt =t (ta, tp) is a globally hyperbolic times trip with timelike boundary

- S is a Friedrich system with admissible boundary conditions B4,

Full-regularity for Friedrichs systems cannot be expected!

Backward Heat equation can be rewritten as a symmetric positive system

Theorem: The Cauchy problem is well-posed if

- M =R x X globally hyperbolic with timelike boundary
- Sis a Friedrichs system with < os(dt) - |- >> 0

- Badm is an admissible boundary conditions

- (b, ) are Cauchy data satisfying compatibility condition up to any order
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Energy estimates: symmetric hyperbolic systems

Theorem (symmetric hyperbolic system)

- M =R x X globally hyperbolic with timelike boundary

- S is symmetric hyperbolic with admissible boundary condition B .4,
Then for each tg € t(M) 3 C>0s. t. V t1 > tg it holds VWV € By,

51
[, 1WPdue, < et [ [ 1suRdpsds + ) [ widug
pxg to ):f Yp

t1 0

where t: M — R be a Cauchy temporal function and ¥ := J=(p) N s

P

>x
4

to
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Energy estimates: symmetric hyperbolic systems

Theorem (symmetric hyperbolic system)

- M =R x X globally hyperbolic with timelike boundary

- S is symmetric hyperbolic with admissible boundary condition B .y,
Then for each to € t(M) 3 C >0s. t. V t; > to it holds VW € By,

51
[, 1witdng < ceam@ [ ] 1swPdpds + eSm0) [ widug
zfl to JXP JEp

o]

where t: M — R be a Cauchy temporal function and X5 := J=(p) N X

Corollary: finite speed of propagation, i.e. supp W C V := J(supp f) U J(supp h) J

Proposition (reduction to compact Cauchy surfaces):

- (M,g) = (R x o, —32dt? + ht) with o non-compact Cauchy surface

- (R x U, —pB2dt? + ht) for any relatively compact U with smooth boundary U C X
If Cauchy problem for S can be solved for any U C X with B,y along OU

4
the Cauchy problem for S can be solved on M
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Energy estimates: symmetric hyperbolic systems

Sketch of the proof: . P
- t1 Ztl
-n-differential form:
wi= 7 Re (< os(b)W W >> bjwoly = Yoo
/ to

- Stokes' theorem for manifold with Lipschitz boundary yields

/dw:/w:/ wf/ er/er/w
K OK Zfl Z‘:o red blue

- Hyperbolicity of S = [, ,.w > 0 while ¥ € Bygpy = [ _,w >0

t1
/ |W|?duy —/ |W|?duo g/ dw < C/ / (IW]? + |SV|?)dusds
b4 P K to /£

1

t1
- By setting h(s) ::/ [WPdus, ot1):= C/ / (|\U|2+|S\U|2)dusds+/ |W|2duo
pai to JEP P

t
and using Gronwall, we obtain:  h(t1) < a(t1) + C/ ' h(s)ds < a(tl)eC(tlftu)
to

O
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Energy estimates: Friedrich systems

Remarks: If S is a symmetric hyperbolic systems on M = R x X, then
(i) if ¥ is non-compact — ¥ compact

(i) S — Sx :=S + Aos(dt) is symmetric positive system

Theorem (Friedrich systems)

- Mt = t~1(tas, tp) globally hyperbolic time strip with timelike boundary
- S is a Friedrich systems with admissible boundary condition B4,

- St is the formal adjoint of S with admissible boundary condition Bzdm
- ( X is compact if S is a symmetric hyperbolic system )

Then 3 C=C(Mr)>0s. t. Vost Oy, =0, &y, =0and ¢ € B]

adm

I®lize,, ) < ClIST@lize,, )

Sketch of the proof:
2STO [ D)y, +(P ] o5(0”)D)onr, = ([ SO)p, —(STD | @)y, +2(STD [ D)y, > (D] )y,
since ® € Bf = (¢|os(n)®)om, <0 => c(®| D)y, < 2(P|STd)p,
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WEAK and STRONG solutions in a time strip M := t~1(t,, tp)

Definition: We call ¥ € J# := (rC(E|MT)7 ¢ ')MT)k. [ Imy

(W) Weak Solution if it holds (¢ | )y, = (ST® [ W)y,
for any ® € I'c(E|pm; ) such that ® € Bf, and Py, =0=95,

adm
(S) Strong Solution if 3{W,},, W, € I'(E|y;) s.t. Vi € Bogm on OM and

k— o0 k— oo
Wk = Vllzmyy —=0  and  [|SWk — fll 2y ——2 0

Theorem: Any weak solution is a strong solution if

- M7 = t~1(ta, tp) globally hyperbolic time strip (X compact for S.H.S.)

- S is a Friedrich systems with admissible boundary condition B4,

Comments on the Proof

- Admissible boundary conditions are local, so we can localise

- In Fermi coordinates, we can use the local theory [Phillips-Lax,Rauch,Massey-Rauch].
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WEAK and STRONG solutions in a time strip M := t~1(t,, tp)

Theorem: There exists a unique weak solution if

- M7 = t~1(ta, tp) globally hyperbolic time strip (X compact for S.H.S.)

- S is a Friedrich systems with admissible boundary condition B4,

Sketch of the proof:
- Energy Estimates: ||®[|,2(p,) < c||ST¢'||L2(MT)
- The kernel of the operator St acting on dom St is trivial
dom ST :={® € Tc(En,) | ®[g,, = 0,95, =0, € Bagm}
- £: ST(dom ST) — C given by £(©) = (¢ | f)m, where ® satisfies STd = ©
- Energy Estimates = ¢ is bounded:
00) = (®Hmy < fllizmy) 1Pli2(my)  (Cauchy-Schwarz inequality)

<A Mllzup ISTOliz(mry = A5 l2qmg) 1Ol 2y )

-Hence (¢ | P)m, = £(O) fh:m (©| W), = (ST | W)y, for all & € domST

Simone Murro (University of Paris-Saclay) Cauchy problem for Friedrichs systems Paris, 15.01.2021 16 /18



Differentiability of the solutions

Differentiability for Friedrichs systems with os(dt) > 0

- Friedrichs system S = og(dt)V: — H with os(dt) > 0 and B = ker Gg
- The compatibility condition of order k > 0 for h € F(E|Zt ) and § € T(E) reads
o

K .
jg; JI(I((I(%IJ)I (VJtGB) ‘azohk—j =0, 1)

where the sequence (hy )k of sections of Elazo is defined inductively by ho := b and

k—1
(k—1)! k=1( -1
= 3 e i, Dt T 5 0y ol
=
where H; := [V, Hj_1] and Hg := os(dt)~1H

Theorem (N. Ginoux - S. M.) — TAKE HOME MESSAGE

- M is globally hyperbolic manifold with timelike boundary

- S is a Friedrich systems with og(dt) > 0 with admissible boundary condition B,4m

- Cauchy data satisfies the compatibility condition (1)

The Cauchy problem is well-posed
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Outlook

WHAT WE KNOW AND WHAT COMES NEXT?

well-posedness for symmetric hyperbolic system with B,
v' Classical Dirac operator with Chiral and MIT boundary conditions

v" Wave equation with Neumann and transparent boundary condition

What comes next?
- Propagation of singularities for symmetric hyperbolic systems with B4,
- Well-posedness and support properties for Klein-Gordon operator with Bfg[i’f”

- Symmetric hyperbolic systems with nonlocal boundary conditions

e.g. Dirac operator with APS boundary conditions

- Friedrichs systems with constraints

e.g. Maxwell equations or Euler equation for incompressible fluids

THANKS for your attention!
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