ON THE CAUCHY PROBLEM FOR FRIEDRICHS SYSTEMS

Simone Murro

Department of Mathematics University of Paris-Saclay

Séminaire "Quantum fields interacting with geometry"

Paris, 15th of January 2021

German Research Foundation

EINSTEIN 1915

Classical spacetime \longleftrightarrow Lorentzian manifold

- \diamond globally hyperbolic spacetime: $M = \mathbb{R} imes \Sigma$ with metric $g = -\beta^2 dt^2 + h_t$
- $\diamond\,$ classical fields: section of a vector bundle E
 ightarrow M
- \diamond dynamics: (pseudo)-differential (hyperbolic) operator $P: \Gamma(E) \rightarrow \Gamma(E)$

When the Cauchy problem for P is well-posed?

- $\partial \Sigma = \emptyset$: CLASSICAL RESULTS --- (Hadamard; Leray; Hörmander; Friederich, ...)
- $\partial \Sigma \neq \emptyset$: DEPENDS ON THE BOUNDARY CONDITIONS

GOAL: study the Cauchy problem for Friedrichs systems

... and on the menù of the day we have:

 Wave equation
 - - - Dirac equation
 - - - Klein-Gordon equation

 but also
 Diffusion-Reaction equations (e.g. the Heat equation)

Outline of the Talk

- Geometric Preliminaries
- Friedrichs Systems of constant characteristic
- Admissible Boundary conditions
- Energy estimates
- Existence and uniqueness of strong solutions
- Differentiability of the solutions
- Outlook

Based on

S. M. and N. Ginoux "On the Cauchy problem for Friedrichs systems on globally hyperbolic manifolds with timelike boundary" arXiv:2007.02544

Geometric preliminaries

- M is connected, time-oriented, oriented smooth manifold with smooth boundary ∂M
- g is Lorentzian metric and ∂M is timelike

Few important definitions

- Temporal function: $t \in C^{\infty}(M, \mathbb{R})$ strictly increasing on future directed causal curve and ∇t is timelike everywhere and past-pointing
- Cauchy hypersurface Σ : if each inextendible timelike curve $\gamma \cap \Sigma = \{pt\}$
- Globally hyperbolic: M strongly causal and $\forall p, q \in M, J^+(p) \cap J^-(q)$ compact

Bernal and Sánchez (2005) – Aké, Flores and Sánchez (2019): M is globally hyperbolic (with timelike boundary) \oplus Exists a Cauchy temporal function $(t^{-1}(s) := \Sigma_s \text{ is a Cauchy})$ and $\nabla t \in T\partial M$ \Downarrow M isometric to $\mathbb{R} \times \Sigma$ with metric $-\beta^2 dt^2 + h_t$, where $\beta \in C^{\infty}(M, (0, \infty))$

Friedrichs systems of constant characteristic

- E o M be a \mathbb{K} -vector bundle with finite rank N and sesquilinear fiber metric $\prec \cdot | \cdot \succ$

Definition: a 1st order S is called symmetric system if

(S) $\sigma_S(\xi) \colon E_p \to E_p$ is Hermitian with respect to $\prec \cdot | \cdot \succ$, $\forall \xi \in T_p^* M$ and $\forall p \in M$.

Additionally, we say that S is *hyperbolic* respectively *positive* if it holds:

(H) $\prec \sigma_S(\tau) \cdot | \cdot \succ$ is positive definite on E_p , for any future-directed timelike $\tau \in T_p^*M$

$$(\mathsf{P}) \ \phi \mapsto \prec \Re e(\mathsf{S}^{\dagger} + \mathsf{S})\phi \,|\, \phi \succ_{\Sigma_t} \geq c_t \prec \phi \,|\, \phi \succ_{\Sigma_t} \in C^0(\mathbb{R}) \text{ with } c_t > 0.$$

We call **Friedrichs system**, any *symmetric* system S which is *hyperbolic* or *positive*. If dim ker $\sigma_S(n^{\flat})$ is constant then S is **of constant characteristic** (where $n \perp \partial M$).

Example:
$$E = \mathbb{C}^{N} \times [0, \infty) \times \mathbb{R}^{n} \rightarrow ([0, \infty) \times \mathbb{R}^{n}, \eta) \text{ with } \prec | \succ = \langle | \rangle_{\mathbb{C}^{N}}$$

 $S := A_{0}(p)\partial_{t} + \sum_{j=i}^{n} A_{j}(p)\partial_{x_{j}} + B(p)$
(S) $A_{0} = A_{0}^{\dagger}, A_{j} = A_{j}^{\dagger}$ (H) $\sigma_{S}(dt + \sum_{j} \alpha_{j}dx_{j}) = A_{0} + \sum_{j=1}^{n} \alpha_{j}A_{j} > 0.$
(P) $\Re e(B + B^{\dagger} - \frac{\partial_{t}(\sqrt{g}A_{0})}{\sqrt{g}} - \sum_{j=1}^{n} \frac{\partial_{x_{j}}(\sqrt{g}A_{j})}{\sqrt{g}}) > 0, \quad (C.C.) \text{ dim ker } A_{z} \text{ is const.}$

Simone Murro (University of Paris-Saclay)

Cauchy problem for Friedrichs systems

Basic Properties

Lemma: If $\prec \cdot | \cdot \succ$ is indefinite and S is a symmetric hyperbolic system (I) $\langle \cdot | \cdot \rangle := \prec \sigma_{S}(dt) \cdot | \cdot \succ$ is positive Hermitian metric; (II) $\mathfrak{S} = \sigma_{S}(dt)^{-1}S$. is symmetric hyperbolic system (III) Cauchy problem (\mathfrak{S}) \iff Cauchy problem (S) set: $(\sigma_{S}(dt)^{-1}\mathfrak{f}, \mathfrak{h}) \leftarrow (\mathfrak{f}, \mathfrak{h}))$

Lemma: If S is a symmetric hyperbolic system in $M_T := t^{-1}(t_0, t_1)$ (I) $\mathfrak{S} := S + \lambda \sigma_S(dt)$ is symmetric hyperbolic system

$$\begin{split} \mathfrak{S}\widetilde{\Psi} &= \widetilde{\mathfrak{f}} \\ \widetilde{\Psi}|_{\Sigma_{\boldsymbol{0}}} &= \widetilde{\mathfrak{h}} \\ \widetilde{\Psi} &\in B \end{split} \qquad \begin{cases} \mathsf{S}\Psi = \mathfrak{f} \\ \Psi|_{\Sigma_{\boldsymbol{0}}} &= \mathfrak{h} \\ \Psi \in B, \end{cases} \end{split}$$

where $\tilde{\mathfrak{f}} = e^{-\lambda t}\mathfrak{f}$, $\tilde{\mathfrak{h}} = \mathfrak{h}$ and $\widetilde{\Psi} = e^{-\lambda t}\Psi$.

(II) $\forall U \subset M$ compact, $\exists \lambda \equiv \lambda(U)$ such that \mathfrak{S} is a positive symmetric system

Lemma: If S is a symmetric system, we have a Green Formula (Green Formula) $(S\Phi | \Phi)_M - (\Phi | S^{\dagger}\Phi)_M = (\Phi | \sigma_S(n^{\flat})\Phi)_{\partial M}$

Example I: The classical Dirac operator

- M = (M, g) is a globally hyperbolic spin manifold with timelike boundary;
- SM is a *spinor bundle*: \mathbb{C} -vector bundle with indefinite sesquilinear metric

$$\prec \cdot | \cdot \succ : \mathbb{S}_p M \times \mathbb{S}_p M \to \mathbb{C}$$

and a Clifford multiplication, i.e. fiber-preserving map $\gamma \colon TM \to \mathsf{End}(\mathbb{S}M)$

Dirac operator: $D := \gamma \circ \nabla^{\mathbb{S}} \colon \Gamma(\mathbb{S}M) \to \Gamma(\mathbb{S}M)$ which in local coordinates reads

$$\mathsf{D} = \sum_{\mu=\mathbf{0}}^{n} \varepsilon_{\mu} \gamma(\mathbf{e}_{\mu}) \nabla_{\mathbf{e}_{\mu}}^{\mathbb{S}}$$

- $(e_{\mu})_{\mu=0,...,n}$ is a local orthonormal Lorentzian frame of TM and $\varepsilon_{\mu} := g(e_{\mu}, e_{\mu})$ - $\gamma(u)\gamma(v) + \gamma(v)\gamma(u) = -2g(u, v)$ for every $u, v \in T_pM$ and $p \in M$.

Remarks:

- (i) Topological obstruction to existence of a spinor bundle;
- (ii) Existence of spinor bundles on parallelizable manifolds;
- (iii) D is nowhere characteristic.

Example II: The geometric wave operator

- -M is a globally hyperbolic with timelike boundary and $g = -\beta^2 dt^2 + h_t$;
- V be an Hermitian vector bundle of finite rank;
- P is a normally hyperbolic operator i.e. $P = -\text{tr}(\nabla \nabla) + c$ and principal symbol $\sigma_P(\xi) = -g(\xi^{\sharp}, \xi^{\sharp}) \cdot \text{Id}_V, \quad \text{for every } \xi \in T^*M.$

A normally hyperbolic operator P can be rewritten as SYMM. HYPERBOLIC SYST.

$$\mathsf{S} := (\mathsf{A}_0 \nabla_{\partial_t} + \mathsf{A}_{\Sigma} \nabla^{\Sigma} + \mathsf{C})$$

$$\Psi := \begin{pmatrix} \nabla_{\partial_t} u \\ \nabla^{\Sigma} u \\ u \end{pmatrix} \quad A_0 := \begin{pmatrix} \frac{1}{\beta^2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad A_{\Sigma} = \begin{pmatrix} 0 & -\operatorname{tr}_{h_t} & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} \text{suitable} \end{pmatrix}$$

Remarks:

- (i) Cauchy problem $(P) \iff$ Cauchy problem (S);
- (ii) S is of constant characteristic:

$$\sigma_{\mathcal{S}}(\mathrm{n}^{\flat}) = \left(egin{array}{ccc} 0 & -\mathrm{n}^{\flat} \lrcorner & 0 \ -\mathrm{n}^{\flat} \oslash & 0 & 0 \ 0 & 0 & 0 \ \end{array}
ight)$$

Example III and IV: The Klein-Gordon operator and the Heat operator

- -M = (M, g) is a globally hyperbolic spin manifold with timelike boundary;
- P is the Klein-Gordon operator i.e. $P = -\text{tr}(\nabla \nabla) + m^2$

The Klein-Gordon operator P can be rewritten as SYMM. POSITIVE SYST.

$$S = \begin{pmatrix} 0 & -tr \\ -1 & 0 \end{pmatrix} \nabla + \begin{pmatrix} m^2 & 0 \\ 0 & 1 \end{pmatrix}$$
 with $\Psi = \begin{pmatrix} u \\ \nabla u \end{pmatrix}$

- H is the Forward Heat operator i.e. $H = \nabla_{\partial_t} tr(\nabla^{\Sigma}\nabla^{\Sigma})$
- H_b is the Backward Heat operator i.e. $H = \nabla_{\partial_t} + tr(\nabla^{\Sigma} \nabla^{\Sigma})$

The H and H_b can be rewritten as a SYMM. POSITIVE SYST.

$$\widetilde{\mathsf{S}}_{\lambda} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \nabla_{\partial_{t}} + \begin{pmatrix} 0 & \pm \mathsf{tr} \\ -1 & 0 \end{pmatrix} \nabla^{\Sigma} + \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \quad \text{with} \quad \Psi = \begin{pmatrix} u \\ \nabla^{\Sigma} u \end{pmatrix}$$

Remarks:

(i) Cauchy pr. (P) \iff Cauchy pr. (S) and Cauchy pr. (H) \iff Cauchy pr. (\tilde{S}_{λ}) (ii) S and \tilde{S}_{λ} are of nowhere characteristic

$$\sigma_{\mathcal{S}}(\mathtt{n}^{\flat}) = \left(egin{array}{cc} 0 & -\mathtt{n}^{\flat} \, \lrcorner \ -\mathtt{n}^{\flat} \otimes & 0 \end{array}
ight)$$

Admissible boundary conditions

Definition [Friedrichs]: A boundary space B_{adm} for S is called admissible if

- The quadratic form $\Psi \mapsto \prec \sigma_{\mathcal{S}}(n^{\flat})\Psi | \Psi \succ$ is positive semi-definite on B_{adm} ;
- rank $B_{adm} = \#$ pointwise non-negative eigenvalues of $\sigma_S(n^{\flat})$ counting multiplicity.

Remarks:

(i) The adjoint boundary space is defined by $\mathsf{B}_{adm}^{\dagger} := (\sigma_{\mathsf{S}}(\mathsf{n}^{\flat})(\mathsf{B}_{adm}))^{\perp}$, i.e.

$$\{\Phi\in \Gamma(E|_{\partial M})\,|\, ext{for any}\,\,\Psi\in \mathsf{B}_{adm}\,\, ext{it holds}\,\,\prec\sigma_{\mathsf{S}}(\mathtt{n}^{\flat})\Psi\,|\,\Phi\succ=0\}\,.$$

(ii) $\Phi \mapsto \prec \sigma_{\mathcal{S}}(\mathbf{n}^{\flat})\Phi \mid \Psi \succ$ is negative semi-definite on $\mathsf{B}_{adm}^{\dagger}$

Examples for classical Dirac operators:

Lorentzian MIT boundary space is the range of $\pi_{Lor} := \frac{1}{2} \left(\operatorname{Id} \pm \imath \gamma(n) \right)$

 $\prec \sigma_{\mathsf{D}}(\mathsf{n}^{\flat})\pi_{\mathrm{MIT}}\psi \mid \pi_{\mathrm{MIT}}\psi \succ = \prec \gamma(\mathsf{n})\pi_{\mathrm{MIT}}\psi \mid \pi_{\mathrm{MIT}}\psi \succ = \imath \prec \pi_{\mathrm{MIT}}\psi \mid \pi_{\mathrm{MIT}}\psi \succ = 0$

Riemannian MIT boundary space is the range of $\pi_{\text{Riem}} := \frac{1}{2} \left(\text{Id} - \frac{1}{\beta} \gamma(n) \gamma(\partial_t) \right)$

$$\prec \sigma_{\mathsf{D}}(\mathsf{n}^{\flat})\pi_{\operatorname{Riem}}\psi \mid \pi_{\operatorname{Riem}}\psi \succ = \prec \gamma(\mathsf{n})\pi_{\operatorname{Riem}}\psi \mid \pi_{\operatorname{Riem}}\psi \succ$$
$$= \frac{1}{\beta} \prec \gamma(\partial_t)\pi_{\operatorname{Riem}}\psi \mid \pi_{\operatorname{Riem}}\psi \succ \geq 0$$

Admissible boundary conditions

Definition [Friedrichs]: A boundary space Badm for S is called admissible if

- The quadratic form $\Psi \mapsto \prec \sigma_S(n^{\flat})\Psi | \Psi \succ$ is positive semi-definite on B_{adm} ;
- rank $B_{adm} = \#$ pointwise non-negative eigenvalues of $\sigma_S(n^{\flat})$ counting multiplicity.

Remarks:

(i) The adjoint boundary space is defined by $\mathsf{B}^\dagger_{adm} := (\sigma_{\mathsf{S}}(\mathsf{n}^\flat)(\mathsf{B}_{adm}))^{\perp}$, i.e.

$$\{\Phi\in \Gamma(E|_{\partial M})\,|\,\text{for any }\Psi\in \mathsf{B}_{adm}\,\,\text{it holds }\,\prec\sigma_\mathsf{S}(\mathtt{n}^\flat)\Psi\,|\,\Phi\succ=0\}\,.$$

(ii) $\Phi \mapsto \prec \sigma_{\mathcal{S}}(\mathbf{n}^{\flat})\Phi \mid \Psi \succ$ is negative semi-definite on $\mathsf{B}_{adm}^{\dagger}$

Examples for geometric wave operator:

Neumann like-boundary condition: $\nabla_n^{\Sigma} u = 0 \implies B_{adm}^{N} = \ker \begin{pmatrix} 0 & n \downarrow & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Transparent boundary condition:
$$\nabla_{n}^{\Sigma} u = -b\nabla_{\partial_{t}} u \implies \mathsf{B}_{adm}^{T} = \ker \begin{pmatrix} b & n \downarrow & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Examples for the Klein-Gordon operator and Heat operator: Robin like-boundary condition: $a\nabla_n u = bu \implies B^{N}_{adm} = \ker \begin{pmatrix} -b & an \rfloor \\ 0 & 0 \end{pmatrix}$

The Cauchy problem

Theorem: there exists a unique strong solution for the Cauchy problem if

- $M_T := t^-(t_a, t_b)$ is a globally hyperbolic times trip with timelike boundary
- S is a Friedrich system with admissible boundary conditions B_{adm}

Full-regularity for Friedrichs systems cannot be expected!

Backward Heat equation can be rewritten as a symmetric positive system

Theorem: The Cauchy problem is well-posed if

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary
- S is a Friedrichs system with $\prec \sigma_{\mathsf{S}}(dt) \cdot | \cdot \succ > 0$
- B_{adm} is an admissible boundary conditions
- $(\mathfrak{h},\mathfrak{f})$ are Cauchy data satisfying compatibility condition up to any order

Energy estimates

Energy estimates: symmetric hyperbolic systems

Theorem (symmetric hyperbolic system)

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary
- S is symmetric hyperbolic with admissible boundary condition B_{adm} Then for each $t_0 \in t(M) \exists C > 0$ s. t. $\forall t_1 \ge t_0$ it holds $\forall \Psi \in B_{adm}$

$$\int_{\Sigma_{t_1}^{\rho}} |\Psi|^2 d\mu_{t_1} \leq C e^{C(t_1-t_0)} \int_{t_0}^{t_1} \int_{\Sigma_s^{\rho}} |S\Psi|^2 d\mu_s ds + e^{C(t_1-t_0)} \int_{\Sigma_{t_0}^{\rho}} |\Psi|^2 d\mu_{t_0}$$

where $t \colon M \to \mathbb{R}$ be a Cauchy temporal function and $\Sigma_s^p := J^-(p) \cap \Sigma_s$

Energy estimates

Energy estimates: symmetric hyperbolic systems

Theorem (symmetric hyperbolic system)

- $M = \mathbb{R} imes \Sigma$ globally hyperbolic with timelike boundary
- S is symmetric hyperbolic with admissible boundary condition B_{adm} Then for each $t_0 \in t(M) \exists C > 0$ s. t. $\forall t_1 \ge t_0$ it holds $\forall \Psi \in B_{adm}$

$$\int_{\Sigma_{t_1}^p} |\Psi|^2 d\mu_{t_1} \leq C e^{C(t_1-t_0)} \int_{t_0}^{t_1} \int_{\Sigma_s^p} |S\Psi|^2 d\mu_s ds + e^{C(t_1-t_0)} \int_{\Sigma_{t_0^p}} |\Psi|^2 d\mu_{t_0}$$

where $t\colon M \to \mathbb{R}$ be a Cauchy temporal function and $\Sigma^p_s := J^-(p) \cap \Sigma_s$

Corollary: finite speed of propagation, *i.e.* supp $\Psi \subset \mathcal{V} := J(\text{supp } f) \cup J(\text{supp } h)$

Proposition (reduction to compact Cauchy surfaces):

- $(M,g) = (\mathbb{R} imes \Sigma_0, -\beta^2 dt^2 + h_t)$ with Σ_0 non-compact Cauchy surface
- $(\mathbb{R} \times U, -\beta^2 dt^2 + h_t)$ for any relatively compact U with smooth boundary $U \subset \Sigma_0$ If Cauchy problem for S can be solved for any $U \subset \Sigma_0$ with B_{adm} along ∂U

the Cauchy problem for S can be solved on M

Energy estimates: symmetric hyperbolic systems

 $\frac{\text{Sketch of the proof:}}{-n\text{-differential form:}} \omega := \sum_{j=0}^{n} \Re e \left(\prec \sigma_{\mathsf{S}}(b_{j}^{\flat}) \Psi \mid \Psi \succ \right) b_{j} \lrcorner \text{vol}_{M} \xrightarrow{\sum_{t=0}^{p} \Sigma_{t_{0}}} \Sigma_{t_{0}} \Sigma_{t_{0}}$

- Stokes' theorem for manifold with Lipschitz boundary yields

$$\int_{\mathcal{K}} d\omega = \int_{\partial \mathcal{K}} \omega = \int_{\Sigma_{t_{\mathbf{1}}}^{\rho}} \omega - \int_{\Sigma_{t_{\mathbf{0}}}^{\rho}} \omega + \int_{\mathsf{red}} \omega + \int_{\mathsf{blue}} \omega$$

- Hyperbolicity of S $\Longrightarrow \int_{blue} \omega \ge 0$ while $\Psi \in \mathsf{B}_{adm} \Longrightarrow \int_{\mathsf{red}} \omega \ge 0$

$$\int_{\Sigma_{t_1}^p} |\Psi|^2 d\mu_1 - \int_{\Sigma_{t_0}^p} |\Psi|^2 d\mu_0 \leq \int_{\mathcal{K}} d\omega \leq C \int_{t_0}^{t_1} \int_{\Sigma_s^p} (|\Psi|^2 + |\mathsf{S}\Psi|^2) d\mu_s ds$$

- By setting
$$h(s) := \int_{\Sigma_s^p} |\Psi|^2 d\mu_s$$
, $\alpha(t_1) := C \int_{t_0}^{t_1} \int_{\Sigma_s^p} (|\Psi|^2 + |S\Psi|^2) d\mu_s ds + \int_{\Sigma_0^p} |\Psi|^2 d\mu_0$

and using Grönwall, we obtain: $h(t_1) \leq \alpha(t_1) + C \int_{t_0}^{t_1} h(s) ds \leq \alpha(t_1) e^{C(t_1 - t_0)}$

Energy estimates: Friedrich systems

Remarks: If S is a symmetric hyperbolic systems on $M = \mathbb{R} \times \Sigma$, then

- (i) if Σ is non-compact $\rightarrow \widetilde{\Sigma}$ compact
- (ii) $S \rightarrow S_{\lambda} := S + \lambda \sigma_{S}(dt)$ is symmetric positive system

Theorem (Friedrich systems)

-
$$M_T = t^{-1}(t_a, t_b)$$
 globally hyperbolic time strip with timelike boundary

- S is a Friedrich systems with admissible boundary condition $\mathsf{B}_{\textit{adm}}$
- S^\dagger is the formal adjoint of S with admissible boundary condition $\mathsf{B}_{\textit{adm}}^\dagger$
- (Σ is compact if S is a symmetric hyperbolic system)

Then
$$\exists \ \widetilde{C} = \widetilde{C}(M_T) > 0$$
 s. t. $\forall \Phi$ s.t. $\Phi|_{\Sigma_{t_a}} = 0$, $\Phi|_{\Sigma_{t_b}} = 0$ and $\Phi \in \mathsf{B}_{adm}^{\dagger}$

$$\|\Phi\|_{L^{2}(E_{|_{M_{\mathcal{T}}}})} \leq \widetilde{C} \|\mathsf{S}^{\dagger}\Phi\|_{L^{2}(E_{|_{M_{\mathcal{T}}}})}$$

Sketch of the proof:

$$2(\mathsf{S}^{\dagger}\Phi \mid \Phi)_{M_{\mathcal{T}}} + (\Phi \mid \sigma_{\mathsf{S}}(\mathsf{n}^{\flat})\Phi)_{\partial M_{\mathcal{T}}} = (\Phi \mid \mathsf{S}\Phi)_{M_{\mathcal{T}}} - (\mathsf{S}^{\dagger}\Phi \mid \Phi)_{M_{\mathcal{T}}} + 2(\mathsf{S}^{\dagger}\Phi \mid \Phi)_{M_{\mathcal{T}}} \ge c(\Phi \mid \Phi)_{M_{\mathcal{T}}}$$

since $\Phi \in \mathsf{B}^{\dagger} \Longrightarrow (\Phi \mid \sigma_{\mathsf{S}}(\mathsf{n})\Phi)_{\partial M_{\mathcal{T}}} \le 0 \Longrightarrow c(\Phi \mid \Phi)_{M_{\mathcal{T}}} \le 2(\Phi \mid \mathsf{S}^{\dagger}\Phi)_{M_{\mathcal{T}}}$

WEAK and STRONG solutions in a time strip $M_T := t^{-1}(t_a, t_b)$

Definition: We call
$$\Psi \in \mathscr{H} := \overline{\left(\Gamma_c(E|_{M_T}), (.|.)_{M_T}\right)^{(.|.)_{M_T}}}$$

$$\|\Psi_k - \Psi\|_{L^2(M_T)} \xrightarrow{k \to \infty} 0 \quad \text{ and } \quad \|\mathsf{S}\Psi_k - \mathfrak{f}\|_{L^2(M_T)} \xrightarrow{k \to \infty} 0$$

Theorem: Any weak solution is a strong solution if

- $M_T = t^{-1}(t_a, t_b)$ globally hyperbolic time strip (Σ compact for S.H.S.)
- S is a Friedrich systems with admissible boundary condition B_{adm}

Comments on the Proof

- Admissible boundary conditions are local, so we can localise
- In Fermi coordinates, we can use the local theory [Phillips-Lax,Rauch,Massey-Rauch].

WEAK and STRONG solutions in a time strip $M_T := t^{-1}(t_a, t_b)$

Theorem: There exists a unique weak solution if

- $M_T = t^{-1}(t_a, t_b)$ globally hyperbolic time strip (Σ compact for S.H.S.)
- S is a Friedrich systems with admissible boundary condition B_{adm}

Sketch of the proof:

- Energy Estimates: $\|\Phi\|_{L^2(M_T)} \leq c \|\mathsf{S}^{\dagger}\Phi\|_{L^2(M_T)}$
- The kernel of the operator S^\dagger acting on dom S^\dagger is trivial

dom S[†] := {
$$\Phi \in \Gamma_c(E_{M_T}) \mid \Phi|_{\Sigma_{t_1}} = 0, \Phi|_{\Sigma_{t_0}} = 0, \Phi \in B_{adm}$$
}

-
$$\ell \colon S^{\dagger}(\mathsf{dom}\,S^{\dagger}) \to \mathbb{C}$$
 given by $\ell(\Theta) = (\Phi \,|\, \mathfrak{f})_{M_{\mathcal{T}}}$ where Φ satisfies $S^{\dagger}\Phi = \Theta$

- Energy Estimates $\Rightarrow \ell$ is bounded:

$$\begin{split} \ell(\Theta) &= (\Phi \mid \mathfrak{f})_{M_{\mathcal{T}}} \leq \|\mathfrak{f}\|_{L^{2}(M_{\mathcal{T}})} \|\Phi\|_{L^{2}(M_{\mathcal{T}})} \qquad \text{(Cauchy-Schwarz inequality)} \\ &\leq \lambda^{-1} \|\mathfrak{f}\|_{L^{2}(M_{\mathcal{T}})} \|S^{\dagger}\Phi\|_{L^{2}(M_{\mathcal{T}})} = \lambda^{-1} \|\mathfrak{f}\|_{L^{2}(M_{\mathcal{T}})} \|\Theta\|_{L^{2}(M_{\mathcal{T}})} \end{split}$$

-Hence $(\Phi \mid \mathfrak{f})_{M_{\mathcal{T}}} = \ell(\Theta) \stackrel{Riesz}{=}{Thm.} (\Theta \mid \Psi)_{M_{\mathcal{T}}} = (S^{\dagger} \Phi \mid \Psi)_{M_{\mathcal{T}}} \text{ for all } \Phi \in \text{dom}S^{\dagger}$

Differentiability for Friedrichs systems with $\sigma_{\rm S}(dt) > 0$

- Friedrichs system S = $\sigma_{\sf S}(dt) \nabla_t H$ with $\sigma_{\sf S}(dt) > 0$ and B = ker $G_{\sf B}$
- The compatibility condition of order $k \ge 0$ for $\mathfrak{h} \in \Gamma(E|_{\Sigma_{to}})$ and $\mathfrak{f} \in \Gamma(E)$ reads

$$\sum_{j=0}^{k} \frac{(k)!}{j!(k-j)!} \left(\nabla_{t}^{j} G_{\mathsf{B}} \right) \Big|_{\partial \Sigma_{\mathbf{0}}} \mathfrak{h}_{k-j} = 0, \tag{1}$$

where the sequence $(\mathfrak{h}_k)_k$ of sections of $E_{|\partial \Sigma_n}$ is defined inductively by $\mathfrak{h}_0 := \mathfrak{h}$ and

$$\mathfrak{h}_k := \sum_{j=0}^{k-1} \frac{(k-1)!}{j!(k-1-j)!} \mathcal{H}_{j\mid_{\partial \Sigma_0}} \mathfrak{h}_{k-1-j} + \nabla_t^{k-1} \big(\sigma_{\mathsf{S}}^{-1}(dt)\mathfrak{f}\big)_{\mid_{\partial \Sigma_0}} \qquad \text{for all } k \ge 1,$$

where $H_j := [\nabla_t, H_{j-1}]$ and $H_0 := \sigma_S(dt)^{-1}H$

Theorem (N. Ginoux - S. M.) - TAKE HOME MESSAGE

- M is globally hyperbolic manifold with timelike boundary
- S is a Friedrich systems with $\sigma_{\sf S}(dt)>0$ with admissible boundary condition ${\sf B}_{adm}$
- Cauchy data satisfies the compatibility condition (1)

The Cauchy problem is well-posed

Outlook

WHAT WE KNOW AND WHAT COMES NEXT?

well-posedness for symmetric hyperbolic system with Badm

- $\checkmark~$ Classical Dirac operator with Chiral and MIT boundary conditions
- \checkmark Wave equation with Neumann and transparent boundary condition

What comes next?

- Propagation of singularities for symmetric hyperbolic systems with B_{adm}
- Well-posedness and support properties for Klein-Gordon operator with $\mathsf{B}^{\textit{Robin}}_{\textit{adm}}$
- Symmetric hyperbolic systems with nonlocal boundary conditions
 - e.g. Dirac operator with APS boundary conditions
- Friedrichs systems with constraints
 - e.g. Maxwell equations or Euler equation for incompressible fluids

THANKS for your attention!