Invariant states on Weyl algebras for the action of the symplectic group

Simone Murro

Department of Mathematics University of Freiburg

AQFT: WHERE OPERATOR ALGEBRA MEETS MICROLOCAL ANALYSIS

Cortona, 8th of June 2018

Joint project with Federico Bambozzi and Nicola Pinamonti

DYNAMICAL SYSTEM: ($\mathfrak A$ unital *-algebra, $\mathcal G$ group, Φ ergodic group of *-automorphisms)

QUESTION: How many invariant states we can find?

- atural $\mathfrak A$ Von Neumann, $\mathcal G$ compact and $atural \mathsf{Abelian} \xrightarrow{\mathsf{Størmer}} \mathsf{unique} \ \mathcal G$ -invariant state
- $\mathfrak Q$ Von Neumann, $\mathcal G$ compact and Abelian $\xrightarrow{\mathsf{Høegh-Krohn}}$ unique $\mathcal G$ -invariant state

ANY MODELS ARE LEFT OUT FROM THIS SCENARIO?

- ullet Orientation preserving automorphisms of the noncommutative torus $(\mathfrak{A}^{nc}_{\mathbb{T}},Sl(2,\mathbb{Z}),\Phi)$
- Symplectomorphim of the quantum Hall effect $(\mathfrak{A}^{QHE}, Sp(2g, \mathbb{Z}), \Phi)$

POSSIBLE OBSTRACTION!

- \clubsuit infinite SI(2, \mathbb{Z})-invariant states ω on the (commutative) C^* -algebra $\mathfrak{A}_{\mathbb{T}}$
- \lozenge following Waldmann's ideas we can "deform" ω so that ω_W is state on $\mathfrak{A}^{NC}_{\mathbb{T}^2}$
- \spadesuit the noncommutative torus \mathfrak{A}^{NC}_{m2} is *-isomorphic to Weyl C^* -algebra
 - \heartsuit GOAL: CLASSIFY $Sp(2g,\mathbb{Z})$ -INVARIANT STATES ON WEYL ALGEBRAS

Outline of the Talk

- Weyl algebras
 - (I) Construction for \mathbb{Z}^{2g}
 - (II) Automorphism induced by $Sp(2g,\mathbb{Z})$
- $Sp(2g, \mathbb{Z})$ -invariant states
 - (I) Definition and main theorem
 - (II) Sketch of the proof
- ▶ Based on: Invariant states on Weyl algebras for the action of the symplectic group Federico Bambozzi, S.M., Nicola Pinamonti - (arXiv:1802.02487 [math.OA])

Weyl algebras I: Construction for \mathbb{Z}^{2g}

- Fix $h \in \mathbb{R}$ st $\hbar := h/2\pi \in \mathbb{R} \setminus \mathbb{Q}$
- ullet Choose a skew-symmetric, bilinear map $\sigma: \mathbb{Z}^{2g} imes \mathbb{Z}^{2g} o \mathbb{Z}$

$$\sigma := \begin{pmatrix} 0 & -1_{g \times g} \\ 1_{g \times g} & 0 \end{pmatrix}$$

ullet $\mathbb{Z}^2
ightarrow W_m$ linear operator on $C^0(\mathbb{Z}^{2g},\mathbb{C})$ defined by

$$(W_m v)(n) := e^{\imath h \sigma(m,n)} v(n+m)$$

• Weyl *-algebra $\mathcal A$ is obtained by endowing $\mathcal V=\operatorname{\mathsf{span}}_{\mathbb C}\{W_m\,|\, m\in\mathbb Z^{2g}\}$ with

(*)
$$W_m W_n = e^{ih\sigma(m,n)} W(n+m)$$
 (*) $(W_m)^* = W_{-m}$

Remark:

• Weyl C^* -algebra $\mathfrak{A}=\overline{(\mathcal{A},\|\ \|)}$ where the C^* -norm $\|\cdot\|$ is given by

$$\|\mathfrak{a}\| := \sup_{\omega \in S_A} \sqrt{\omega(\mathfrak{a}^*\mathfrak{a})}$$

- By setting g=1 and $W_{(1,0)}=U$, $W_{(0,1)}=V$, we obtain NC torus $UV=e^{2\imath h}VU$
- Since $\mathbb{Z}^2 \hookrightarrow \mathbb{Z}^{2g}$ by $m=(m_1,m_2)\mapsto \widetilde{m}=(m_1,0\ldots,0,m_2,0,\ldots,0)$, we set g=1.

Weyl algebra II: automorphism induced by $Sp(2,\mathbb{Z})$

- Symplectic group $Sp(2,\mathbb{Z})ig(\equiv Sl(2,\mathbb{Z})ig)$ acts on $\mathbb{Z}^2
 ig m\mapsto \Theta m$, with det $\Theta{=}1$
- $Sp(2,\mathbb{Z}) \ni \Theta \longmapsto \Phi_{\theta} \in Aut(\mathfrak{A})$ by linearity: $\Phi_{\Theta}W_m = W_{\Theta m}$
- Set of fixed points = $\{(0,0) \in \mathbb{Z}^2\}$ \Longrightarrow the action of Φ_Θ is **ergodic** on \mathcal{A} $\Phi_\Theta\big(\lambda W_{(0,0)}\big) = \lambda W_{(0,0)} \qquad \text{for any } \lambda \in \mathbb{C} \,, \Theta \in \mathit{Sp}(2,\mathbb{Z})$

Proposition: characterization of $Sp(2,\mathbb{Z})$ -orbits

- $(1) \ \{ \text{set of orbits of the symplectic group } \textit{Sp}(2,\mathbb{Z}) \ \} \leftrightarrow \mathcal{E} := \{ (0,j) \, | \, j \in \mathbb{N} \}$
- (2) Every $Sp(2,\mathbb{Z})$ -orbit of \mathbb{Z}^2 contains an element of the form (j,j) with $j\in\mathbb{N}$

Sketch of the proof - part (1):

- $\Theta\in Sp(2,\mathbb{Z})\equiv Sl(2,\mathbb{Z})$ takes the form $\Theta=egin{pmatrix}a&b\\c&d\end{pmatrix},$ with ad-bc=1
- $\forall q=(q_1,q_2)\in\mathbb{Z}^2 \text{ we have } \Theta q=(aq_1+bq_2,cq_1+dq_2) \xrightarrow{\frac{\forall q_1,q_2}{\exists \ a,b,c,d}} \Theta q=\begin{pmatrix} 0\\q_3>0 \end{pmatrix}$
- Let be $n_i=(0,m_i)$ s.t. $m_i\geq 0$ and $m_1\neq m_2$ and $\underline{assume}\ \exists\Theta\in Sp(2,\mathbb{Z})$ s.t. $\Theta n_1=n_2$
- $-\Theta n_1 = n_2 \Longrightarrow b = 0 \xrightarrow{\det \Theta = 1} a = d = 1 \xrightarrow{\Theta n_1 = n_2} \Theta = Id \Longrightarrow m_1 = m_2$

Weyl algebra II: automorphism induced by $Sp(2,\mathbb{Z})$

- Symplectic group $Sp(2,\mathbb{Z})\big(\equiv Sl(2,\mathbb{Z})\big)$ acts on $\mathbb{Z}^2
 ightarrow\Theta m$, with det $\Theta{=}1$
- $Sp(2,\mathbb{Z}) \ni \Theta \longmapsto \Phi_{\theta} \in Aut(\mathfrak{A})$ by linearity: $\Phi_{\Theta}W_m = W_{\Theta m}$
- Set of fixed points = $\{(0,0) \in \mathbb{Z}^2\}$ \Longrightarrow the action of Φ_Θ is **ergodic** on \mathcal{A} $\Phi_\Theta\big(\lambda W_{(0,0)}\big) = \lambda W_{(0,0)} \qquad \text{for any } \lambda \in \mathbb{C} \,, \Theta \in \mathit{Sp}(2,\mathbb{Z})$

Proposition: characterization of $Sp(2,\mathbb{Z})$ -orbits

- (1) {set of orbits of the symplectic group $Sp(2,\mathbb{Z})$ } $\leftrightarrow \mathcal{E} := \{(0,j) | j \in \mathbb{N}\}$
- (2) Every $Sp(2,\mathbb{Z})$ -orbit of \mathbb{Z}^2 contains an element of the form (j,j) with $j\in\mathbb{N}$

Sketch of the proof - part (2):

- Let $\mathcal O$ be a $Sp(2,\mathbb Z)$ -orbit
- $(1) \Longrightarrow \mathbf{j} = (0,j) \in \mathcal{O}$
- Choosing $\Theta = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, we have $\Theta \mathbf{j} = (j,j) \in \mathcal{O}$

$Sp(2,\mathbb{Z})$ -invariant states

Definitions: A $Sp(2,\mathbb{Z})$ -invariant state ω if for any $\Phi_{\Theta} \in Aut(\mathfrak{A})$, $\Theta \in Sp(2,\mathbb{Z})$ it holds

-
$$\omega(\mathfrak{a}^*\mathfrak{a}) \geq 0$$
 - $\omega(1_{\mathfrak{A}}) = 1$ - $\omega \circ \Phi_{\Theta} = \omega$

N.B.: To construct ω , it is enough to prescribe its values on the generators of $\mathfrak A$

$$\omega(W_m) = egin{cases} 1 & ext{if } m = (0,0) \ p^{(m)} \in \mathbb{C} & ext{else} \end{cases}$$

for a sequence of values $ho^{(m)}$ and then extend it by linearity to any $\mathfrak{a} \in \mathfrak{A}$

Theorem

The only $Sp(2,\mathbb{Z})$ -invariant state on $\mathfrak A$ is the trace state au defined by

$$\tau(W_m) = \begin{cases} 1 & \text{if } m = (0,0) \\ 0 & \text{else} \end{cases}$$

$$au$$
 is obviously invariant: $au(\Phi_{\Theta}W_m) = au(W_{\theta m}) = egin{cases} 1 & \text{if } m = (0,0) \\ 0 & \text{else} \end{cases}$

Sketch of the proof I

Assume by contraddiction there exists $Sp(2,\mathbb{Z})$ -invariant state ω (different from au!)

$$\omega(W_\chi) = \begin{cases} 1 & \text{if } \chi = (0,0) \\ p^{(\chi)} \in \mathbb{C} & \text{else} \end{cases}$$

<u>Goal:</u> $Sp(2,\mathbb{Z})$ -invariance $\iff p^{(\chi)} = 0$ for any $\chi \neq 0 \Longrightarrow \omega \equiv \tau$

- (1) By positivity of $\omega \Longrightarrow \overline{\omega(W_\chi)} = \omega(W_\chi^*)$
- (2) By $Sp(2,\mathbb{Z})$ -invariance $\Longrightarrow \overline{\omega(W_\chi)} = \omega(W_\chi^*) = \omega(W_{-\chi}) = \omega(W_{-ld\chi}) = \omega(W_\chi)$
- (3) Choosing $a = W_0 + W_\chi \xrightarrow{\omega(a^*a) \geq 0} 1 p^2 \leq 0$
- (4) Hence, any $Sp(2,\mathbb{Z})$ -invariant states reads as

$$\omega(W_\chi) = egin{cases} 1 & ext{if } \chi = (0,0) \ p^{(\chi)} \in [-1,1] & ext{else} \end{cases}$$

Next, we choose a more suitable χ without loosing of generality

- (5) Fix $\chi \neq 0$.
- (6) By previous Prop.: For any χ there exists $\Theta \in Sp(2,\mathbb{Z})$ s.t. $\Theta \chi = \xi = (\xi_1,\xi_1)$
- (7) In particular $Sp(2,\mathbb{Z})$ -invariance $\Longrightarrow \omega(W_{\chi}) = \omega(W_{\xi}) = p$

Sketch of the proof II

(8) Let $m, n \in \mathbb{N}$ s.t. $\frac{m}{n} \in \mathbb{N}$ and n > 1 and consider $\mathcal{V}_{\xi; m, n} \subset \mathcal{A}$ with elements of the form

$$\mathfrak{a} = \alpha_0 \, W_{(0,0)} + \sum_{j \geq 1} \alpha_j \, W_{\Theta_j \xi} \qquad \text{ with } \Theta_j := \begin{pmatrix} 1 + \frac{m}{n} (n-1)j & \frac{m}{n} j \\ n-1 & 1 \end{pmatrix} \in \mathit{Sp}(2,\mathbb{Z})$$

(9) For any $\mathcal{V}_{\xi; m,n}$, the map $\mathfrak{a} \mapsto \omega(\mathfrak{a}^*\mathfrak{a})$ is a quadratic form $\omega(\mathfrak{a}^*\mathfrak{a}) = \overline{\alpha}^t \mathbf{H} \alpha$

where $q_{(i-j)m}:=\omega(W_{\Theta_i\xi-\Theta_j\xi})$ and $\varphi_{m,n}:=hmn\xi_2^2$

(10) Notation: $\mathbf{H} = [p, 1, q_m e^{i\varphi_{m,n}}, q_{2m} e^{i2\varphi_{m,n}}, q_{3m} e^{i3\varphi_{m,n}}, \dots]$

Sketch of the proof III

(11) On (d+1)-D subspace $\mathcal{V}_{d;n}\subset\mathcal{V}_{\xi;\,m,n}$ the restriction of H to $\mathcal{V}_{d;n}$ reads

$$\begin{aligned} \mathbf{H}_n' &= \left[\,p\,,\,1\,,\,q_m e^{i\,\frac{2\pi}{d}\,n}\,,\,q_{2m} e^{2i\,\frac{2\pi}{d}\,n}\,,\,q_{3m} e^{3i\,\frac{2\pi}{d}\,n}\,,\,\ldots\,,\,q_{(d-1)m} e^{(d-1)i\,\frac{2\pi}{d}\,n}\right] + \text{``ε''} \\ \left(\text{idea: $\hbar := \frac{h}{2\pi}$ is irrational \Rightarrow $\exists m \in \mathbb{N}$ big enough s.t. $\frac{m}{d!} \in \mathbb{N}$ and $\left|\left(h\,m\,\xi_2^2\right) \mod(2\pi) - \frac{2\pi}{d!}\right| < \frac{\varepsilon}{n\,d^2}\right)$} \end{aligned}$$

We can now argue that p has to be 0:

- (12) We can notice that the set of positive Hermitian matrices form a convex cone
- (13) The matrix $\mathbf{P}'_d := [p; 1; 0; 0; \dots; 0]$ can be obtained as the convex combination

$$\mathsf{P}_d' = \sum_{n=1}^d \frac{1}{d} \mathsf{H}_n'.$$

- (14) For d "big enough" $\det(\mathbf{P}'_d) = 1 dp^2 < 0 \Rightarrow \mathbf{P}'_n$ not positive $\Rightarrow \mathbf{H}'_n$ not positive
- (15) Hence p=0 is a necessary condition for ω being an $Sp(2,\mathbb{Z})$ -invariant state
- (16) This holds for every $m \in \mathbb{Z}^2 \Longrightarrow$ therefore the only $Sp(2,\mathbb{Z})$ -invariant state is τ

Resume & Outlook

• Weyl *-algebra useful used in QM and noncommutative geometry

$$\mathcal{A} = \operatorname{span}_{\mathbb{C}} \{ W_m \, | \, m, n \in \mathbb{Z}^{2g} \, , \ W_m W_n = e^{\imath h \sigma(m,n)} W(n+m) \, , \ (W_m)^* = W_{-m} \}$$

• Unique $Sp(2,\mathbb{Z})$ -invariant states on Weyl algebras is

$$au(W_m) = egin{cases} 1 & ext{if } m = 0 \ 0 & ext{else} \end{cases}$$

What comes next?

- Weyl *-algebra for presymplectic abelian group
- Other noncommutative spaces: Moyal space, Connes-Landi Sphere, ...

... and most importantly: KLAUS' BOOK!

THANKS for your attention!