HADAMARD STATES FOR MAXWELL FIELDS VIA COMPLETELY GAUGE FIXING

Simone Murro
Department of Mathematics, University of Genoa

Thematic programme on
"Spectral Theory and Mathematical Relativity"
July 6, 2023

MOTIVATION

- Consider a globally hyperbolic 4-manifold $\mathrm{M}=\left(\mathbb{R} \times \Sigma, g=-\beta^{2} d t^{2}+h_{t}\right)$
- A gauge theory is a quadruple $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ consisting of:
(I) two Hermitian bundles $\mathrm{V}_{0}, \mathrm{~V}_{1}$ over M ;
(II) a formally self-adjoint differential operator $\mathrm{P}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$;
(III) a linear differential operator $\mathrm{K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ with $\mathrm{K} \neq 0$ such that
(i) $\mathrm{P} \circ \mathrm{K}=0$ (gauge transformation)
(ii) $\mathrm{D}_{1}:=\mathrm{P}+\mathrm{KK} K^{*}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ is Green hyperbolic;
(iii) $D_{0}:=K^{*} K: \Gamma\left(V_{0}\right) \rightarrow \Gamma\left(V_{0}\right)$ is Green hyperbolic,

Equivalently, we can work at the level of initial data
(I') $\mathrm{V}_{\rho_{i}}$ are the bundle of initial data for D_{i}
(III') $\mathrm{K}_{\Sigma}:=\rho_{1} K U_{0} \quad \mathrm{~K}_{\Sigma}^{\dagger}:=\rho_{0} K^{*} U_{1} \quad \mathrm{G}_{i}=\left(\rho_{i} \mathrm{G}_{i}\right)^{*} \mathrm{G}_{i, \Sigma}\left(\rho_{i} \mathrm{G}_{i}\right)$
where ρ_{i} and U_{i} are the Cauchy data and the Cauchy evolution operator and $\left(\rho_{i} \mathrm{G}_{i}\right)^{*}: \Gamma_{c}\left(\mathrm{~V}_{\rho_{i}}\right) \rightarrow \Gamma_{s c}\left(\mathrm{~V}_{i}\right)$ is the adjoint of $\left(\rho_{i} \mathrm{G}_{i}\right)$

HOW CAN WE QUANTIZE IT?

Step 1: Construct the classical phase space

$$
\begin{aligned}
& \mathrm{i}\left(\cdot, \mathrm{G}_{1} \cdot\right)_{\mathrm{V}_{1}}=: q_{1}, \mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}\left(\mathrm{K}^{*}| |_{c}\right)}{\operatorname{ran}\left(\mathrm{P} \mid{r_{c}}_{c}\right)} \xrightarrow{\left[\mathrm{G}_{1}\right]} \frac{\operatorname{ker}\left(\mathrm{P}| |_{\mathrm{sc}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}\right|_{\mathrm{sc}}\right)} \\
& \text { unitary } \downarrow^{\left[\rho_{1} G_{1}\right]} \underbrace{\left[G_{1}\right]} \\
& \mathrm{i}\left(\cdot, \mathrm{G}_{1_{\Sigma}} \cdot\right)_{\mathrm{v}_{\rho_{1}}}=: q_{1_{\Sigma}}, \mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid r_{\mathrm{c}}\right)}{\operatorname{ran}\left(\mathrm{K}_{\Sigma} \mid \Gamma_{c}\right)} \xrightarrow{\left[\mathcal{U}_{1}\right]} \xrightarrow{\operatorname{ker}\left(\mathrm{D}_{1} \mid \Gamma_{\mathrm{sc}}\right) \cap \operatorname{ker}\left(\mathrm{K}^{*} \mid \Gamma_{\mathrm{sc}}\right)} \underset{\mathrm{K}\left(\operatorname{ker}\left(\mathrm{D}_{0} \mid \Gamma_{\mathrm{sc}}\right)\right)}{ }
\end{aligned}
$$

and assign $\forall v \in \mathcal{V}_{\mathrm{P}}$ an element of the abstract unital $*$-algebra $\operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}_{1}\right)$

$$
\text { generators: } \quad \Phi(v) \quad \Phi^{*}(v) \quad \mathbb{1}
$$

CCR relations:

$$
\begin{aligned}
& {[\Phi(v), \Phi(w)]=\left[\Phi^{*}(v), \Phi^{*}(w)\right]=0} \\
& {\left[\Phi(v), \Phi^{*}(w)\right]=\mathrm{q}_{1}(v, w) \mathbb{1}}
\end{aligned}
$$

Step 2: Construct an Hadamard states $\omega: \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}_{1}\right) \rightarrow \mathbb{C}$ defined by

$$
\text { covariances: } \Lambda^{+}(v, w):=\omega\left(\Phi(v) \Phi^{*}(w)\right) \quad \Lambda^{-}(v, w):=\omega\left(\Phi^{*}(w) \Phi(v)\right)
$$

Hadamard conditions: $\mathrm{WF}^{\prime}\left(\Lambda^{ \pm}\right) \subset \mathcal{N}^{ \pm} \times \mathcal{N}^{ \pm} \quad$ where: $\mathcal{N}=\mathcal{N}^{+} \cup \mathcal{N}^{-}$

PROPOSITION [Gérard-Wrochna]: let $c^{ \pm}: \Gamma_{c}\left(\mathrm{~V}_{\rho_{\mathbf{1}}}\right) \rightarrow \Gamma\left(\mathrm{V}_{\rho_{\mathbf{1}}}\right)$ be
(i) $c^{ \pm}\left(\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{c}\right)\right) \subset \operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)$ and $\left(c^{ \pm}\right)^{\dagger}=c^{ \pm} \quad$ (w.r.t. $\left.q_{1, \Sigma}\right)$;
(ii) $\left(c^{+}+c^{-}\right) \mathfrak{f}=\mathfrak{f} \bmod \operatorname{ranK}_{\Sigma} \forall \mathfrak{f} \in \operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid r_{c}\right)$;
(iii) $\mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, c^{ \pm} \mathfrak{f}\right)=\mathrm{i}\left(\mathfrak{f}, \mathrm{G}_{1, \Sigma} c^{ \pm} \mathfrak{f}\right) v_{\rho_{\mathbf{1}}} \geq 0 \quad \forall \mathfrak{f} \in \operatorname{ker}\left(\mathrm{~K}_{\Sigma}^{\dagger} \mid r_{c}\right)$.
(iv) $W F^{\prime}\left(U_{1} c^{ \pm}\right) \subset\left(\mathcal{N}^{ \pm} \cup F\right) \times \mathrm{T}^{*} \Sigma$ for $F \subset \mathrm{~T}^{*} \mathrm{M}$

Then $\quad \Lambda^{ \pm}([s],[t]):=\left(s, \lambda^{ \pm} t\right)_{\mathrm{V}_{1}} \quad$ where $\quad \lambda^{ \pm}:=\left(\rho_{1} \mathrm{G}_{1}\right)^{*} \mathrm{iG}_{1, \Sigma} c^{ \pm}\left(\rho_{1} \mathrm{G}_{1}\right)$ are pseudo-covariances for a quasifree Hadamard state $\omega: \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}_{1}\right) \rightarrow \mathbb{C}$.

Difficulties:

- the fiber metric on $\mathrm{V}_{\rho_{\mathbf{1}}}$ may in general be not positive definite \Longrightarrow the positivity (iii) is difficult to achieve
- pseudodifferential calculus works nice with the Hadamard condition (iv), but interact badly with gauge invariance (i) and positivity (iii)

PROPOSAL: we fix completely the gauge degrees of freedom and we construct $c^{ \pm}$modifying the method of Gérard and Wrochna for linearized Yang-Mills

OUTLINE

(I) The Cauchy radiation gauge
(II) Hodge-decomposable forms
(III) The Complete Gauge Fixing and the Phase space
(IV) Hodge-decomposable data in the Cauchy radiation gauge
(V) Hadamard states in the Cauchy radiation gauge

Joint project with Gabriel Schmid, Ph.D. student in Genoa

Maxwell's theory as a gauge theory:
(I) $\mathrm{V}_{0}=\left(\mathrm{M} \times \mathbb{C},(\cdot, \cdot) \mathrm{V}_{0}\right)$ and $\mathrm{V}_{1}=\left(\mathrm{T}^{*} \mathrm{M} \otimes_{\mathbb{R}} \mathbb{C},(\cdot, \cdot) \mathrm{V}_{\mathbf{1}}\right)$ where

$$
(\cdot, \cdot) v_{\mathbf{1}}:=\int_{\mathrm{M}} g^{-1}(\cdot, \cdot) \operatorname{vol}_{g}
$$

(II) set $\mathrm{P}=: \delta d, \mathrm{~K}=d$ and $\mathrm{K}^{*}=\delta \Longrightarrow D_{1}:=\delta d+d \delta$ and $D_{0}=\delta d$

Because ker P is invariant under conformal rescaling we can set

$$
\mathrm{M}=\mathbb{R} \times \Sigma \quad g=-d t^{2}+h_{t} .
$$

DEFINITION : $A=A_{0} d t+A_{\Sigma}$ satisfies Cauchy radiation gauge on a Σ if

$$
\delta A=0(\text { Lorenz gauge }) \quad \text { and }\left.\quad A_{0}\right|_{\Sigma}=\left.\partial_{t} A_{0}\right|_{\Sigma}=0
$$

REMARK: On ultrastatic spacetimes, the following gauge are equivalent:
(i) A satisfies the Cauchy radiation gauge;
(ii) A satisfies the temporal gauge $A_{0}=0$ and the Coulomb gauge $\delta_{\Sigma} A_{\Sigma}=0$;
(iii) A satisfies the radiation gauge, i.e. temporal gauge and Lorenz gauge.
(iv) The fiber metric g^{-1} reduces to h^{-1} in the Cauchy radiation gauge

$$
g^{-1}(A, A)=-\left(A_{0}, A_{0}\right)+h^{-1}\left(A_{\Sigma}, A_{\Sigma}\right)=h^{-1}\left(A_{\Sigma}, A_{\Sigma}\right) \geq 0
$$

When can be achieved the Cauchy radiation gauge?

DEFINITION: We call space of Hodge-decomposable k-forms

$$
\Omega_{\mathrm{H}}^{k}(\Sigma):=\left(\left(\operatorname{ran}\left(\mathrm{d}_{\Sigma}\right) \cap \Omega_{c}^{k}(\Sigma)\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right)\right) \otimes_{\mathbb{R}} \mathbb{C}
$$

We call space of radiation k-forms $\Omega_{R}^{k}(M)$

$$
\Omega_{\mathrm{R}}^{k}(\mathrm{M}):= \begin{cases}\left\{\omega \in \Omega_{\mathrm{sc}}^{k}(\mathrm{M})\left|\omega_{\Sigma}\right|_{\Sigma} \in \Omega_{\mathrm{H}, c}^{k}(\Sigma)\right\} & \text { for } k>0 \\ C_{\mathrm{sc}}^{\infty}(\mathrm{M}) & \text { for } k=0\end{cases}
$$

where $\Omega_{\mathbf{H}, c}^{k}(\Sigma):=\Omega_{\mathbf{H}}^{k}(\Sigma) \cap \Omega_{c}^{k}(\Sigma)$ and $\left.\omega_{\Sigma}=\omega-d t \wedge\left(\partial_{t}\right\lrcorner \omega\right)$.

REMARKS: On a Riemannian manifold (Σ, h) it holds:
(i) $\Omega_{\mathrm{H}}^{0}(\Sigma)=C_{c}^{\infty}(\Sigma, \mathbb{C})$ and $\Omega_{\mathrm{H}}^{1}(\Sigma)=\left(\operatorname{ran}\left(\left.\mathrm{d}_{\Sigma}\right|_{\Omega_{c}^{1}}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right)\right) \otimes_{\mathbb{R}} \mathbb{C}$;
(ii) If Σ is compact, then $\Omega_{\mathrm{H}}^{k}(\Sigma)=\Omega^{k}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}$ (by Hodge-decomposition);
(iii) the Hodge-Laplacian Δ_{0} is invertible modulo a constant, namely

$$
\Delta_{0}: \frac{\Omega_{\mathbf{H}}^{0}(\Sigma)}{\left\{f \in \Omega_{\mathbf{H}}^{0}(\Sigma) \mid f \text { is constant }\right\}} \rightarrow \operatorname{ran}\left(\left.\delta_{\Sigma}\right|_{\Omega_{\mathbf{H}}^{1}(\Sigma)}\right) \text { is bijective. }
$$

PROPOSITION: $\left(\mathrm{M}=\mathbb{R} \times \Sigma, g=-d t^{2}+h_{t}\right)$ be globally hyperbolic For any $A \in \Omega_{R}^{1}(M)$, there exists a $f \in \Omega_{R}^{0}(M)$ (unique up to a constant) such that $A^{\prime}:=A+\mathrm{d} f$ satisfies the Cauchy radiation gauge.

Sketch of the proof: -decompose $A=A_{0} \mathrm{~d} t+A_{\Sigma}$

- A^{\prime} satisfies the Cauchy radiation gauge if we can solve the system

$$
\begin{cases}D_{0} f & =-\delta A \\ \left.\partial_{t} f\right|_{\Sigma} & =-\left.A_{0}\right|_{\Sigma} \\ \left.\Delta_{0} f\right|_{\Sigma} & =-\left.\delta_{\Sigma} A_{\Sigma}\right|_{\Sigma}\end{cases}
$$

- the Hodge-Laplacian Δ_{0} is invertible (modulo a constant), so che Cauchy problem for f is well-posed.

REMARK: f is unique (up to a constant), so the gauge is fixed completely, i.e.

$$
\frac{\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{sc}}}\right.}{\operatorname{ran}\left(\left.\mathrm{K}\right|_{\mathrm{scc}}\right)} \simeq \operatorname{ker}\left(\left.\mathrm{D}_{1}\right|_{\mathrm{rsc}}\right) \cap \operatorname{ker}\left(\mathrm{K}^{*}| |_{\mathrm{sc}}\right) \cap \operatorname{ker}\left(\mathrm{R}\left|\left.\right|_{\mathrm{sc}}\right)\right.
$$

where $R=U_{1} R_{\Sigma} \rho_{1}$ and $R_{\Sigma}\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right):=\left(a_{0}, \pi_{0}, 0,0\right)$

PROPOSITION (phase space): The following diagram is commutative

$$
\begin{aligned}
& \underset{\mathcal{V}_{P}:=\frac{\operatorname{ker}\left(\mathrm{K}^{*} \mid \Gamma_{\mathbf{C}_{\mathbf{G}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathbf{G}}}\right)} \xrightarrow[{{ }^{\left[\rho_{\mathbf{1}} \mathrm{G}_{\mathbf{1}}\right]}}]{\left[\mathrm{G}_{\mathbf{1}}\right]}}{\left.\operatorname{lG}_{\mathbf{1}}\right]} \frac{\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{R}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}\right|_{\Gamma_{R}}\right)} \\
& \mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathbf{H}}\right)}{\operatorname{ran}\left(\mathrm{K}_{\Sigma} \mid \Gamma_{\mathbf{H}}\right)} \longrightarrow \frac{\left[U_{\mathbf{1}}\right]}{\operatorname{ker}\left(\mathrm{D}_{1} \mid \Gamma_{\mathbf{R}}\right) \cap \operatorname{ker}\left(\mathrm{K}^{*} \mid \Gamma_{\mathbf{R}}\right)} \underset{\left.\mathrm{ker}\left(\mathrm{D}_{0} \mid \Gamma_{\mathbf{R}}\right)\right)}{ } \\
& { }_{\downarrow}^{i} \boldsymbol{T}_{\Sigma} \uparrow \\
& \mathcal{V}_{\mathrm{R}}:=\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathbf{H}}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma} \mid \Gamma_{\mathbf{H}}\right) \xrightarrow{U_{\mathbf{1}}} \operatorname{ker}\left(\mathrm{D}_{\mathbf{1}} \mid \Gamma_{\mathbf{R}}\right) \cap \operatorname{ker}\left(\mathrm{K}^{*} \mid \Gamma_{\mathbf{R}}\right) \cap \operatorname{ker}\left(\mathrm{R} \mid \Gamma_{\mathbf{R}}\right) \\
& \text { where } \Gamma_{\mathrm{G}}\left(\mathrm{~V}_{1}\right):=\left\{A \in \Gamma_{c}\left(\mathrm{~V}_{1}\right) \mid \mathrm{G}_{1} A \in \Gamma_{\mathrm{R}}\left(\mathrm{~V}_{1}\right)\right\} \subset \Gamma_{c}\left(\mathrm{~V}_{1}\right) \\
& \text { and } \Gamma_{H}\left(\bigvee_{\rho_{1}}\right):=\left(C_{c}^{\infty}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}\right)^{2} \oplus\left(\Omega_{\mathrm{H}, c}^{1}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}\right)^{2} \text {. }
\end{aligned}
$$

DEFINITION: space of Hodge-decomp data in the Cauchy radiation gauge

$$
\mathcal{V}_{\mathrm{R}}:=\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathbf{H}}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma} \mid \Gamma_{\mathbf{H}}\right)
$$

We conclude the classical theory, by endowing \mathcal{V}_{R} with an Hermitian form $q_{\Sigma, R}$

- Decomposing $A=A_{0} d t+A_{\Sigma}$, we set

$$
\rho_{0}: f \mapsto\binom{\left.f\right|_{\Sigma}}{\left.\frac{1}{\mathrm{i}} \partial_{t} f\right|_{\Sigma}} \quad \text { and } \quad \rho_{1}: A \mapsto\left(\begin{array}{c}
\left.A_{0}\right|_{\Sigma} \\
\left.\frac{1}{\mathrm{i}} \partial_{t} A_{0}\right|_{\Sigma} \\
\left.A_{\Sigma}\right|_{\Sigma} \\
\left.\frac{1}{\mathrm{i}} \partial_{t} A_{\Sigma}\right|_{\Sigma}
\end{array}\right)
$$

- By construction $\left[\rho_{1} \mathrm{G}_{1}\right]:\left(\mathcal{V}_{\mathrm{P}}, q_{1}\right) \rightarrow\left(\mathcal{V}_{\Sigma}, q_{1, \Sigma}\right)$ is an unitary isomorphism

$$
q_{1, \Sigma}([\cdot],[\cdot])=\mathrm{i}\left([\cdot], \mathrm{G}_{1, \Sigma}[\cdot]\right) \mathrm{v}_{\rho_{\mathbf{1}}} \quad \mathrm{G}_{1, \Sigma}=\frac{1}{\mathrm{i}}\left(\begin{array}{cccc}
0 & -\mathbb{1} & 0 & 0 \\
-\mathbb{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbb{1} \\
0 & 0 & \mathbb{1} & 0
\end{array}\right)
$$

- We define $q_{\Sigma, R}$ such that $T_{\Sigma}:\left(\mathcal{V}_{\Sigma,} q_{1, \Sigma}\right) \rightarrow\left(\mathcal{V}_{R}, q_{\Sigma, R}\right)$ is unitary

$$
\mathrm{q} \Sigma, \mathrm{R}(\cdot, \cdot)=\mathrm{i}\left(\cdot \mathrm{G}_{\Sigma, \mathrm{R}} \cdot\right) \mathrm{v}_{\rho_{\mathbf{1}}} \quad \mathrm{G}_{\Sigma, \mathrm{R}}=\frac{1}{\mathrm{i}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbb{1} \\
0 & 0 & \mathbb{1} & 0
\end{array}\right)
$$

Summing up: unitary isomorphisms $\left(\mathcal{V}_{\mathrm{P}}, q_{1}\right) \simeq\left(\mathcal{V}_{\Sigma}, q_{1, \Sigma}\right) \simeq\left(\mathcal{V}_{\mathrm{R}}, q_{\Sigma, \mathrm{R}}\right)$

Next goal: Write the $\mathrm{T}_{\Sigma}: \mathcal{V}_{\Sigma} \rightarrow \mathcal{V}_{\mathrm{R}}$ more explicitly

$$
\mathcal{V}_{\mathrm{R}}:=\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathbf{H}}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma} \mid \Gamma_{\mathbf{H}}\right)=\operatorname{ran}\left(\mathrm{T}_{\Sigma}\right) \quad \operatorname{ker}\left(\mathrm{T}_{\Sigma}\right)=\operatorname{ran}\left(\mathrm{K}_{\Sigma} \mid \Gamma_{\mathbf{H}}\right)
$$

To compute T_{Σ} we follows this ansatz

$$
T_{\Sigma}=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}
$$

PROPOSITION: Let (Σ, h) be a Riemannian manifold and $\pi_{\delta}:=\mathbb{1}-\mathrm{d}_{\Sigma} \Delta_{0}^{-1} \delta_{\Sigma}$. There exists a map $T_{\Sigma}: \Gamma_{\mathbf{H}}\left(\mathrm{V}_{\rho_{1}}\right) \rightarrow \Gamma_{\mathbf{H}}\left(\mathrm{V}_{\rho_{1}}\right)$ defined by

$$
T_{\Sigma}=\left(\begin{array}{cc}
0_{2 \times 2} & 0_{2 \times 2} \\
0_{2 \times 2} & \left(\begin{array}{cc}
\pi_{\delta} & 0 \\
0 & \pi_{\delta}
\end{array}\right)
\end{array}\right)
$$

satisfies the following properties
(i) $T_{\Sigma}=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}$ on $\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathbf{H}}\right)$
(ii) $\mathrm{T}_{\Sigma}^{2}=\mathrm{T}_{\Sigma}$ and $\mathrm{T}_{\Sigma} \mid \mathcal{\nu}_{\mathrm{R}}=\mathbb{1}$;
(iii) $\operatorname{ker}\left(\mathrm{T}_{\Sigma}\right)=\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{H}}\right)$;
(iv) $\operatorname{ran}\left(T_{\Sigma}\right)=\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathbf{H}}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma} \mid \Gamma_{\mathbf{H}}\right)$.

Finally we can construct Hadamard states!

- By the standard deformation argument, we assume

$$
(\mathrm{M}, g) \text { to be ultrastatic and of bounded geometry }
$$

- Using pseudodifferential calculus and spectral calculus, we can construct a square root ϵ_{i} of the Hodge-Laplacian Δ_{i} satisfying

$$
\epsilon_{i} \pi_{\delta}=\pi_{\delta} \varepsilon_{i} \quad \text { modulo } \mathcal{W}^{-\infty}
$$

where again $\pi_{\delta}=\mathbb{1}-\mathrm{d} \Sigma \Delta_{0}^{-1} \delta_{\Sigma}$

- Finally consider the pseudodifferential projectors $\pi^{ \pm}$defined by

$$
\pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cccc}
\mathbb{1} & \pm \varepsilon_{0}^{-1} & 0 & 0 \\
\pm \varepsilon_{0} & \mathbb{1} & 0 & 0 \\
0 & 0 & \mathbb{1} & \pm \varepsilon_{1}^{-1} \\
0 & 0 & \pm \varepsilon_{1} & \mathbb{1}
\end{array}\right)
$$

Notice that: since $\mathrm{D}_{i}=\left(\partial_{t}+\epsilon_{i}\right)\left(\partial_{t}-\epsilon_{i}\right)$ modulo $\mathcal{W}^{-\infty}$, then
Hadamard condition: $\mathrm{WF}^{\prime}\left(U_{1} \pi^{ \pm}\right) \subset\left(N^{ \pm} \cup F\right) \times T^{*} \Sigma$ for $F=\{k=0\} \subset T^{*} \mathrm{M}$

THEOREM [S.M., Schmid] The operators $c^{ \pm}:=\mathrm{T}_{\Sigma} \pi^{ \pm} \mathrm{T}_{\Sigma}$, defined by

$$
T_{\Sigma}=\left(\begin{array}{cc}
0_{2 \times 2} & 0_{2 \times 2} \\
0_{2 \times 2} & \left(\begin{array}{cc}
\pi_{\delta} & 0 \\
0 & \pi_{\delta}
\end{array}\right)
\end{array}\right) \quad \pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cccc}
\mathbb{1} & \pm \varepsilon_{0}^{-1} & 0 & 0 \\
\pm \varepsilon_{0} & \mathbb{1} & 0 & 0 \\
0 & 0 & \mathbb{1} & \pm \varepsilon_{1}^{-1} \\
0 & 0 & \pm \varepsilon_{1} & \mathbb{1}
\end{array}\right)
$$

have the following properties:

$$
\begin{equation*}
\left(c^{ \pm}\right)^{\dagger}=c^{ \pm} \quad \text { and } \quad c^{ \pm}\left(\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{H}^{\infty}}\right)\right) \subset \operatorname{ran}\left(\mathrm{K}_{\Sigma}\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left(c^{+}+c^{-}\right) \mathfrak{f}=\mathfrak{f} \quad \bmod \quad \operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{r_{\mathbf{H}}^{\infty}}\right) \quad \forall \mathfrak{f} \in \operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathbf{H}}^{\infty}}\right) \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
& \pm \mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, c^{ \pm} \mathfrak{f}\right) \geq 0 \quad \forall \mathfrak{f} \in \operatorname{ker}\left(\mathrm{~K}_{\Sigma}^{\dagger} \mid r_{\mathbf{H}}^{\infty}\right) \tag{iii}\\
& \mathrm{WF}^{\prime}\left(U_{1} c^{ \pm}\right) \subset\left(\mathcal{N}^{ \pm} \cup F\right) \times \mathrm{T}^{*} \Sigma \text { for } F=\{k=0\} \subset T^{*} \mathrm{M} \tag{iv}
\end{align*}
$$

In other words,

$$
\lambda^{ \pm}:=\left(\rho_{1} \mathrm{G}_{1}\right)^{*} \lambda_{\Sigma}^{ \pm}\left(\rho_{1} \mathrm{G}_{1}\right) \quad \text { where } \quad \lambda_{\Sigma}^{ \pm}:= \pm \mathrm{i} \mathrm{G}_{1, \Sigma} c^{ \pm}
$$

are the pseudo-covariances of a quasi-free Hadamard state on $\operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}_{1}\right)$.

Sketch of the proof

(i) Since $\varepsilon_{i}=\varepsilon_{i}^{*}$ are formally self-adjointw.r.t the Hodge-inner product on Σ

$$
\left(\pi^{ \pm}\right)^{\dagger}=\mathrm{G}_{1, \Sigma}^{-1}\left(\pi^{ \pm}\right)^{*} \mathrm{G}_{1, \Sigma}=\pi^{ \pm}
$$

Then $\pi^{ \pm}, \mathrm{T}_{\Sigma}$ and also $c^{ \pm}$are formally self-adjoint w.r.t. $\sigma_{1, \Sigma}$.
(ii) $\pi^{+}+\pi^{-}=\mathbb{1}$ on $\Gamma_{\mathrm{H}}^{\infty}\left(\mathrm{V}_{\rho_{\mathbf{1}}}\right)$ and hence

$$
\left(c^{+}+c^{-}\right) \mathfrak{f}=T_{\Sigma}^{2} \mathfrak{f}=T_{\Sigma} \mathfrak{f}=\mathfrak{f} \quad \bmod \quad \operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\boldsymbol{H}}^{\infty}}\right)
$$

for all $\mathfrak{f} \in \operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{H}} ^{\infty}\right)$, where in the last step we used that T_{Σ} is a bijection between \mathcal{V}_{P} and \mathcal{V}_{Σ} together with $T_{\Sigma}=\mathbb{1}$ on $\operatorname{ker}_{\Sigma}$.
(iii) we compute

$$
\pm \mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, c^{ \pm} f\right)= \pm \mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, \mathrm{~T}_{\Sigma} \pi^{ \pm} \mathrm{T}_{\Sigma} f\right)= \pm \mathrm{q}_{\Sigma, R}\left(\mathrm{~T}_{\Sigma} \mathfrak{f}, \pi^{ \pm} \mathrm{T}_{\Sigma} f\right) \geq 0
$$

(iv) follows because $\pi^{ \pm}$commutes with T_{Σ} modulo a smooth kernel and $\pi^{ \pm}$ satisfies the Hadamard condition

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

MAXWELL'S THEORY:

- Gauge fixing is useful for getting positivity and gauge invariance, but the price to pay is reducing the space of classical observables if Σ not compact
- For generic manifold, we can construct Hadamard projectors $\pi^{ \pm}$, but it is not clear that they commute with T_{Σ} (even modulo smoothing)

FUTURE WORK: LINEARIZED GRAVITY

- Gauge fixing completely the linearized gravity on the level of initial data: Synchronous, de Donder, traceless-gauge, ...
- Constructing T_{Σ} is very challenging from a technical point of view (two-tensors does not make your life nicer)
- We cannot use the deformation argument, so we need to modify $\pi^{ \pm}$such that the operators $c^{ \pm}=T_{\Sigma} \pi^{ \pm} T_{\Sigma}$ satisfies the Hadamard conditions

> THANKS for your attention!

