The Cauchy problem for the Dirac operator on a Lorentzian spin manifold

Simone Murro

Mathematical Institute University of Freiburg

Seminario di Fisica Matematica 2018

Genova, 19th of December 2018

Joint project with Nadine Große

EINSTEIN 1915

 $\begin{array}{rcl} \mbox{Gravitation interaction} & \longleftrightarrow & \mbox{Lorentzian manifold } (\mathcal{M},g) \\ \mbox{Ric} + \mathbf{g} \left(\Lambda {-} \frac{1}{2} \mbox{scal} \right) = \frac{8 \pi G}{c^4} \mathbf{T} \end{array}$

GEOMETRY: Ric: Ricci (0,2)-tensor, scal: scalar curvature

MATTER: T: stress-egenergy (0,2)-tensor

PHYSICS: A: cosmological constant, G: gravitational constant, c: speed of light

(using the contracted) BIANCHI'S IDENTITY

$$\begin{aligned} \operatorname{div}(\operatorname{Ric} - \frac{\operatorname{scal}}{2} \mathbf{g}) &= 0 &\longrightarrow & \operatorname{div}(\mathbf{T}) = 0 \\ \mathbf{g}^{\alpha \gamma} \nabla_{\gamma}(\mathbf{R}_{\alpha \beta} - \frac{1}{2} \mathbf{g}_{\alpha \beta} \mathbf{R}) &= \mathbf{0} & \underbrace{g^{\alpha \gamma} \nabla_{\gamma} \mathbf{T}_{\alpha \beta} = 0}_{\operatorname{PDEs}} \end{aligned}$$

GOAL: Well-posedness of the Cauchy problem for the Dirac operator

Outline of the Talk

- Mathematical Preliminaries
 - Lorentzian Manifolds: the Spacetime's Geometry
 - Spin Geometry in a Nutshell
- The Cauchy Problem for the Dirac Operator
 - Existence and Uniqueness in a Time Strip
 - Global Well-Posedness
- Outlook
- Based on :

The well-posedness of the Cauchy problem for the Dirac operator on globally hyperbolic manifolds with timelike boundary, Nadine Große and S.M. (arXiv:1806.06544 [math.DG])

Lorentzian Manifolds: the Spacetime's Geometry

Given a Lorentzian manifold (\mathcal{M}, g) we denote

- $v \in T_p\mathcal{M}$: spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, timelike if g(v, v) < 0
- $\gamma: I \to \mathcal{M}$: spacelike if $g(\dot{\gamma}, \dot{\gamma}) > 0$, lightlike if $g(\dot{\gamma}, \dot{\gamma}) = 0$, timelike if $g(\dot{\gamma}, \dot{\gamma}) < 0$
- future/past $J^{\pm}(p) = \{p\} \cup \{q \in \mathcal{M} : \text{future/past directed causal curve from } p \text{ to } q\}$

Definition: Let \mathcal{M} of a connected, time-oriented, oriented Lorentzian manifold

- Cauchy hypersurface Σ : if each inextendible timelike curve $\gamma \cap \Sigma = \{pt\}$
- Globally hyperbolic: \mathcal{M} strongly causal and $\forall p, q \in \mathcal{M}, J^+(p) \cap J^-(q)$ compact

Bernal-Sánchez's Theorem: Then the following are equivalent.

- (i) \mathcal{M} is globally hyperbolic;
- (ii) There exists a Cauchy hypersurface $\Sigma \subset \mathcal{M}$;
- (iii) \mathcal{M} isometric to $\mathbb{R} \times \Sigma$ with metric $-\beta^2 dt^2 + h_t$, where $\beta \in C^{\infty}(\mathcal{M}, (0, \infty))$
 - h_t is a Riemannian metric on Σ depending smoothly on $t \in \mathbb{R}$
 - all sets $\{t_0\} \times \Sigma$ are Cauchy hypersurfaces in $\mathcal M$

Example: Minkoski spacetime (\mathbb{R}^4 , η), Schwarzchild spacetime ($\mathbb{R}^2 \times \mathbb{S}^2$, g_S) NOT Example: anti-de Sitter space ($\mathbb{S}^1 \times \mathbb{R}^3$, g_{adS}), Gödel universe (\mathbb{R}^4 , g_G)

Spin Geometry in a Nutshell

Definition: \mathcal{M} be a connected, time-oriented, oriented, n + 1-dim Lorentzian manifold

- Spinor bundle SM: complex vector bundle with $N := 2^{\lfloor \frac{n+1}{2} \rfloor}$ -dimensional fibers endowed with fiberwise pairing given by the canonical scalar product on \mathbb{C}^N

$$\langle \cdot | \cdot \rangle \colon S_p \mathcal{M} \times S_p \mathcal{M} \to \mathbb{C}$$

and a clifford multiplication: fiber-preserving map $\gamma: T\mathcal{M} \to End(S\mathcal{M})$

- Spin Manifold: manifold which admits a spinor bundle
- **Dirac operator**: D: $\Gamma(SM) \rightarrow \Gamma(SM)$ which in local coordinates this reads as

$$\mathsf{D} = \sum_{\mu=0}^n \imath \gamma(e_\mu) \nabla_{e_\mu}$$

where $(e_{\mu})_{\mu=0,...,n}$ is a local orthonormal Lorentzian frame of TM and $\gamma(u)\gamma(v) + \gamma(v)\gamma(u) = -2g(u, v)$ for every $u, v \in T_{\rho}M$ and $p \in M$.

Remarks:

- (i) Topological obstruction to existence of a spinor bundle;
- (ii) Existence of spinor bundles on parallelizable manifolds;
- (iii) The Dirac Cauchy problem is well posed on glob. hyp. spin manifolds with $\partial \mathcal{M} = \emptyset$

Our Setting: Globally Hyperbolic Spin Manifolds with Nonempty Boundary

- Let $(\widetilde{\mathcal{M}},g)$ be a globally hyperbolic spin manifold of dimension $n+1\geq 3$
- Let $(\mathcal{N},g|_{\mathcal{N}})$ be a submanifold of $(\widetilde{\mathcal{M}},g)$ that is itself globally hyperbolic
- Let $\widetilde{\Sigma}$ be a smooth spacelike Cauchy surface of $\widetilde{\mathcal{M}}$
- Then, $\widehat{\Sigma}:=\widetilde{\Sigma}\cap \mathcal{N}$ is a spacelike Cauchy surface for $\mathcal N$
- We assume that ${\mathcal N}$ divides $\widetilde{{\mathcal M}}$ into two connected components
- The closure of one of them we denote by $\ensuremath{\mathcal{M}}$

Definition: We call \mathcal{M} globally hyperbolic manifold with timelike boundary

- On $\widetilde{\mathcal{M}}$ we choose a Cauchy time function $t \colon \widetilde{\mathcal{M}} \to \mathbb{R}$
- Then $\{t^{-1}(s)\}_{s\in\mathbb{R}}$ gives a foliation by Cauchy surfaces
- We set $\Sigma_s := t^{-1}(s) \cap \mathcal{M}.$
- For $n+1=2,~\mathcal{M}$ is homeomorphic to $\mathbb{R} \times [a,\infty)$ or $\mathbb{R} \times [a,b]$)

Cauchy Problem

MAIN THEOREM

- (\mathcal{M}, g) be a globally hyperbolic spin manifold with timelike boundary $\partial \mathcal{M}$;
- $SM \to M$ be the spinor bundle and $D : \Gamma(SM) \to \Gamma(SM)$ be Dirac operator;
- linear, non-invertible M: $\Gamma(S\partial \mathcal{M}) \rightarrow \Gamma(S\partial \mathcal{M})$ with constant kernel dimension s.t.

 $\mathsf{M}\psi|_{\partial\mathcal{M}}=0 \ \, \text{and} \ \, \mathsf{M}^{\dagger}\psi|_{\partial\mathcal{M}}=0 \quad \Longrightarrow \quad \langle\psi\,|\,\gamma(e_0)\gamma(\mathbf{n})\psi\rangle_q=0\,.$

Then the Cauchy problem for the Dirac operator is well-posed:

(I) $\forall f \in \Gamma_{cc}(S\mathcal{M})$ and $\forall h \in \Gamma_{cc}(S\Sigma_0)$ exists a unique $\psi \in \Gamma_{sc}(S\mathcal{M})$ such that

$$\begin{cases} \mathsf{D}\psi = f \\ \psi|_{\Sigma_{\mathbf{0}}} = h \\ \mathsf{M}\psi|_{\partial\mathcal{M}} = 0 \end{cases}$$
(1)

(II) moreover $\Gamma_{cc}(S\mathcal{M}) \times \Gamma_{cc}(S\Sigma_0) \ni (f,h) \mapsto \psi \in \Gamma_{sc}(S\mathcal{M})$ is continuous;

Example: MIT boundary condition $M = (\gamma(n) - i))$

($\gamma(n)$ denotes Clifford multiplication for n, the outward unit normal on $\partial \mathcal{M}$)

Remark: The Cauchy problem (1) is still well-posed for $(f, h) \in \Gamma_c(S\mathcal{M}) \times \Gamma_c(S\Sigma_0)$

Reformulation of the Cauchy Problem I

Symmetric Positive Hyperbolic Systems

- $E o \mathcal{M}$ be a complex vector bundle with finite rank N and fiberwise metric $\langle \cdot \, | \, \cdot
 angle$
- $\mathfrak{L}: \Gamma(E) \to \Gamma(E)$ with formal L^2 -adjoint \mathfrak{L}^{\dagger}

$$(\cdot | \cdot)_{\mathcal{M}} := \int_{\mathcal{M}} \langle \cdot | \cdot \rangle \mathsf{Vol}_{\mathcal{M}} \, ,$$

Definition: a 1^{st} order \mathfrak{L} is called **symmetric positive hyperbolic system** if

(S) $\sigma_{\mathfrak{L}}(\xi) \colon E_p \to E_p$ is Hermitian with respect to $\langle \cdot | \cdot \rangle$, $\forall \xi \in T_p^* \mathcal{M}$ and $\forall p \in \mathcal{M}$.

(P) $\langle (\mathfrak{L} + \mathfrak{L}^{\dagger}) \cdot | \cdot \rangle$ on E_p is positive definite

(H) $\langle \sigma_{\mathfrak{L}}(\tau) \cdot | \cdot \rangle$ is positive definite on E_{ρ} , for any future-directed timelike $\tau \in T_{\rho}^{*}\mathcal{M}$

In local coordinates (t, x^1, \ldots, x^n) on \mathcal{M} and a local trivialization of E:

$$\begin{split} \mathfrak{L} &:= A_0(p)\partial_t + \sum_{j=i} A_j(p)\partial_{x^j} + B(p) \qquad A_0, A_j, B \in C^{\infty}(\mathcal{M}, Mat(N \times N)) \\ \mathbf{S}) \ A_0 &= A_0^{\dagger}, \ A_j = A_j^{\dagger} \quad (P) \ \kappa := \mathfrak{L} + \mathfrak{L}^{\dagger} = B - \partial_t(\sqrt{g})A_0) - \sum_{j=1}^n \partial_{x^j}(\sqrt{g}A_j) > 0 \\ (H) \ \sigma_{\mathfrak{L}}(\tau) &= A_0 + \sum_{j=1}^{N-1} \alpha_j A_j > 0 \qquad \text{for any } \tau = dt + \sum_j \alpha_j dx^j \end{split}$$

Reformulation of the Cauchy Problem II

NOT Example: $\mathscr{M}^4 := \mathbb{R}^3 \times [0,\infty)$ endowed with the element line

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2 \, .$$

For the Dirac operator $D = \imath \gamma(e_0)\partial_t + \imath \gamma(e_1)\partial_x + \imath \gamma(e_2)\partial_y + \imath \gamma(e_3)\partial_z$ we have

(S) $\gamma(e_j)^{\dagger} = -\gamma(e_j) \not i$ (P) $\kappa = 0 \not i$ (H) $\sigma_{\mathrm{D}}(dt) = \gamma(e_0) \not > 0 \not i$

Lemma 1: Let be $\mathfrak{S} : \Gamma(S\mathcal{M}) \to \Gamma(S\mathcal{M})$ defined by $\mathfrak{S} = -\iota\gamma(e_0)\mathsf{D} + \lambda \mathsf{Id}$. Then:

(I) \mathfrak{S} is symmetric hyperbolic system for all $\lambda \in \mathbb{R}$

(II) Its Cauchy problem is equivalent to the Cauchy problem for the Dirac operator

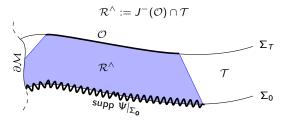
(III) $\forall \mathcal{R} \subset \mathcal{M} \text{ compact } \exists \lambda > 0 \text{ s. t. } \mathfrak{S} \text{ is a symmetric positive hyperbolic system.}$

Idea of Proof of (II): $\Psi = e^{-\lambda t}\psi \Longrightarrow \mathfrak{h} = e^{-\lambda t}h$, $\mathfrak{f} = e^{-\lambda t}\gamma(e_0)f$ and

$$\begin{split} \mathfrak{S}\Psi &= \mathfrak{S}(e^{-\lambda t}\psi) = (-\imath\gamma(e_0)\mathsf{D} + \lambda\mathsf{Id})(e^{-\lambda t}\psi) = -\imath e^{-\lambda t}\gamma(e_0)\mathsf{D}\psi = e^{-\lambda t}\gamma(e_0)f.\\ \mathsf{M}\Psi|_{\partial\mathcal{M}} &= e^{-\lambda t}\mathsf{M}\psi|_{\partial\mathcal{M}} = 0 \quad \text{if and only if} \quad \mathsf{M}\psi|_{\partial\mathcal{M}} = 0. \end{split}$$

Energy Inequality in a Time Strip

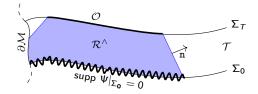
- Time strip: $\mathcal{T}:=t^{-1}([0,T])$ where $t\colon\mathcal{M}\to\mathbb{R}$ is the Cauchy time function
- Let $\lambda \in \mathbb{R}$ s.t. $\mathfrak{S} = -\imath \gamma(e_0)\mathsf{D} + \lambda$ is a symmetric positive hyperbolic system on



Lemma 2: Let $\Psi \in \Gamma(S\mathcal{T})$ satify $\Psi|_{\Sigma_0} = 0$ and $M\Psi|_{\partial \mathcal{M}} = 0$. Then Ψ satisfies the Energy Inequality $\|\Psi\|_{L^2(\mathcal{R}^\wedge)} \le c \|\mathfrak{S}\Psi\|_{L^2(\mathcal{R}^\wedge)}$ for constant c > 0 independent on Ψ .

Sketch of the proof of Lemma 2

(Now we use that \mathfrak{S} is a Symmetric Positive Hyperbolic system)



 $\text{-}(\textbf{S}) \Rightarrow \text{Green identity:} \qquad (\Psi \,|\, \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} - (\mathfrak{S}^{\dagger}\Psi \,|\, \Psi)_{\mathcal{R}^{\wedge}} = (\Psi \,|\, \gamma(e_0)\gamma(\mathfrak{n})\Psi)_{\partial\mathcal{R}^{\wedge}}$

$$\underbrace{(\Psi \mid \gamma(e_0)\gamma(n)\Psi)_{\partial \mathcal{R}^{\wedge}}}_{\text{we want to estimate}} -2(\Psi \mid \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} = -(\Psi \mid \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} - (\Psi \mid \mathfrak{S}^{\dagger}\Psi)_{\mathcal{R}^{\wedge}} = -(\Psi \mid (\mathfrak{S} + \mathfrak{S}^{\dagger})\Psi)_{\mathcal{R}^{\wedge}} \stackrel{(\mathsf{P})}{\leq} -2c(\Psi \mid \Psi)_{\mathcal{R}^{\wedge}}$$

- Boundary: $\partial \mathcal{R}^{\wedge} = \mathcal{O} \cup \left(\Sigma_0 \cap J^-(\mathcal{O}) \right) \cup Y$, and $Y = (Y \cap \partial \mathcal{M}) \sqcup \left(Y \setminus (Y \cap \partial \mathcal{M}) \right)$

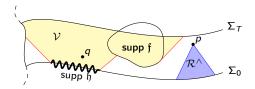
$$\text{-} \quad (\textbf{H}) \Rightarrow (\Psi \,|\, \gamma(e_0) \gamma(n) \Psi)_{\mathcal{O}} > 0 \, \, \text{and} \, \, (\Psi \,|\, \gamma(e_0) \gamma(n) \Psi)_{\mathcal{Y} \setminus (\mathcal{Y} \cap \partial \mathcal{M})} \geq 0$$

 $\text{- Hence:} \quad 2(\Psi \,|\, \lambda \Psi)_{\mathcal{R}^{\wedge}} \leq 2(\Psi \,|\, \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} \quad \xrightarrow{\text{Hölder ineq}} \quad \|\Psi\|_{L^2(\mathcal{R}^{\wedge})} \leq \lambda^{-1} \|\mathfrak{S}\Psi\|_{L^2(\mathcal{R}^{\wedge})}$

Finite Propagation of Speed

Proposition 3: Any solution ψ to the Dirac Cauchy problem (1) propagates with at most speed of light, i.e. its support on \mathcal{T} is inside the region

$$\mathcal{V} := \left(J^+ ig(ext{supp } f \cap \mathcal{T} ig) \cup J^+ ig(ext{supp } h ig)
ight) \cap \mathcal{T},$$

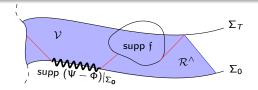


Proof:

- Choose λ s.t. \mathfrak{S} is a symmetric positive hyperbolic system on $\mathcal{R}^{\wedge} = \mathcal{T} \cap J^{-}(p)$
- $\ \ \, \cdot \, \mathfrak{h}|_{\mathcal{R}^{\wedge} \cap \Sigma_{\boldsymbol{0}}} \equiv 0 \text{ and Lemma } 2 \Rightarrow \|\Psi\|_{L^{\boldsymbol{2}}(\mathcal{R}^{\wedge})} \leq c \|\mathfrak{S}\Psi\|_{L^{\boldsymbol{2}}(\mathcal{R}^{\wedge})} = 0 \text{ in } \mathcal{R}^{\wedge}$
- Hence, $\Psi=0$ outside ${\cal V}.$
- Lemma 1 $\Rightarrow \psi$ propagates with at most speed of light

Uniqueness of the Solution

Proposition 4: Suppose there exist $\psi, \phi \in \Gamma(S\mathcal{T})$ satisfying the same Cauchy problem (1). Then $\psi = \phi$.



Proof:

- Lemma $1 \Rightarrow \Psi, \Phi$ are solutions for the same Cauchy problem (2).

$$\begin{cases} \mathfrak{S}(\Psi-\Phi)=0\\ (\Psi-\Phi)|_{\Sigma_{\boldsymbol{0}}}=0\\ \mathsf{M}(\Psi-\Phi)|_{\partial\mathcal{M}}=0 \end{cases}$$

- Finite Prop. Speed \Rightarrow supp Ψ and supp Φ are contained in \mathcal{R}^{\wedge} for $\mathcal{O} := \mathcal{V} \cap \Sigma_{\mathcal{T}}$.
- Energy Inequality $\Rightarrow \|\Psi \Phi\|_{L^2(\mathcal{R}^\wedge)} \le c \|\mathfrak{S}\Psi\|_{L^2(\mathcal{R}^\wedge)} = 0$

- Hence
$$\Psi = \Phi \xrightarrow{\text{Lemma 1}} \psi = \phi$$
.

Weak and Strong Solutions

Definition: We call $\Psi \in \mathscr{H} := \overline{\left(\Gamma_c(S\mathcal{T}), (. | .)_{\mathcal{T}}\right)^{(. | .)_{\mathcal{T}}}}^{(. | .)_{\mathcal{T}}}$

(W) Weak Solution if it holds $(\Phi | \mathfrak{f})_{\mathcal{T}} = (\mathfrak{S}^{\dagger} \Phi | \Psi)_{\mathcal{T}}$ for any $\Phi \in \Gamma_c(S\mathcal{T})$ such that $M^{\dagger} \Phi|_{\partial \mathcal{M}} = 0$ and $\Phi|_{\Sigma_{\mathcal{T}}} \equiv 0$

(S) Strong Solution if $\exists \{\Psi_k\}_k \subset C^{\infty}(\Gamma(SU))$ s.t. $M\Psi_k = 0$ on $\partial \mathcal{M} \cap U$ and

$$\|\Psi_k - \Psi\|_{L^2(U)} \xrightarrow{k o \infty} 0$$
 and $\|\mathfrak{S}\Psi_k - \mathfrak{f}\|_{L^2(U)} \xrightarrow{k o \infty} 0$

where $U \subset \mathcal{M}$ be a compact subset in \mathcal{M} .

Lemma 5: A weak solution Ψ of the Cauchy problem (2) is locally a strong solution.

Comments on the Proof of Lemma 5:

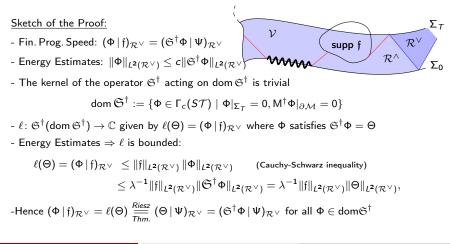
- Far from the boundary, we can use a family of mollifier to conclude
- At the boundary, we choose Fermi coordinates $(x^0, x^1, \dots, x^{n-1}, \widetilde{z})$ such that

$$\widehat{\mathfrak{S}} := (\gamma(e_0)\gamma(e_n))^{-1}\mathfrak{S} = \partial_{\widetilde{z}} + \sum_{j=0}^{n-1} A_j(x)\partial_{x^j} + B(x)$$

- Family of mollifier in (x^0, \ldots, x^{n-1}) -direction + Sobolev theory to conclude.

Existence of a Weak Solution

Theorem 6: There exists a unique weak solution $\Psi \in \mathscr{H}$ to the Cauchy problem (2) with $\mathfrak{f} \in \Gamma_{cc}(S\mathcal{M})$ and $\mathfrak{h} \equiv 0$, restricted to \mathcal{T} .



Global Existence and Green Operators

Sketch of part (I) of the MAIN THEOREM:

- for any $T \in [0,\infty)$ exists a unique $\psi_T \in \Gamma(S\mathcal{T}_T)$ of the Dirac Cauchy problem (1)

- For any $T_1, T_2 \in [0, \infty)$ with $T_2 > T_1 \xrightarrow{\text{unique}}_{\text{sol.}} \psi_{T_2} |_{\mathcal{T}_{T_1}} = \psi_{T_1}$.
- Hence, we can glue everything together to obtain a smooth solution for all $\mathcal{T}\geq 0$
- A similar arguments holds for negative time.

- Since
$$h \in \Gamma_{cc}(S\Sigma_0)$$
, $f \in \Gamma_{cc}(S\mathcal{M}) \xrightarrow{Fin. Prop.}{Speed}$ the solution is spacelike compact.

Proposition 7: The Dirac operator is Green hyperbolic. i.e. there exist linear maps advanced/retarded Green operator $G^{\pm}: \Gamma_{cc}(S\mathcal{M}) \to \Gamma_{sc}(S\mathcal{M})$ satisfying

(i)
$$G^{\pm} \circ Df = D \circ G^{\pm}f = f$$
 for all $f \in \Gamma_{cc}(S\mathcal{M})$;

(ii) supp
$$(G^{\pm}f) \subset J^{\pm}(\text{supp } f)$$
 for all $f \in \Gamma_{cc}(S\mathcal{M})$,

where J^{\pm} denote the causal future (+) and past (-).

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

- well-posedness of the Cauchy problem for

- \checkmark Dirac equation with local boundary condition (Nadine Große)
- ? Dirac equation with nonlocal boundary condition (Nicolò Drago & Nadine Große)
- ? Wave equation (with Nicolas Ginoux & Nadine Große)
- ? Maxwell equation (with Nicolas Ginoux & Nadine Große)

ADDITIONAL DIFFICULTIES:

- reduce wave equation and maxwell equation to 1^{st} -order systems

Q: Are those systems symmetric, hyperbolic and positive?

 $-\partial \mathcal{M}$ is characteristic for the 1st-order systems: det p = 0 where $n \perp \partial \mathcal{M}$ Q: weak solution=strong solution?