Invariant states on Weyl algebras for the action of the symplectic group

Simone Murro

Department of Mathematics University of Freiburg

Young Research Symposium

Montréal, 20th of July 2018

Joint project with Federico Bambozzi and Nicola Pinamonti

PHYSICAL THEORY

measurment: (state, physical observable)
$$\mapsto$$
 results

ALGEBRAIC APPROACH

- Observables collected into a *-algebra A
- Symmetries implemented as algebra automorphism
- States are positive normalized linear maps $\omega: \mathcal{A} \to \mathbb{C}$
 - GNS theorem $(\omega,\mathcal{A}) \Longleftrightarrow \left(\mathscr{H}_{\omega},\Psi_{\omega},\pi_{\omega}\right)$

QUESTION: How many invariant states we can find?

 \heartsuit GOAL: Classify $Sp(2g,\mathbb{Z})$ -invariant states on Weyl algebras

Outline of the Talk

- Weyl algebras for \mathbb{Z}^2 and automorphism induced by $Sp(2,\mathbb{Z})$
- Classification of $Sp(2, \mathbb{Z})$ -invariant states
- Outlook

▶ Based on: Invariant states on Weyl algebras for the action of the symplectic group Federico Bambozzi , S.M., Nicola Pinamonti - (arXiv:1802.02487 [math.OA])

Weyl algebras for \mathbb{Z}^2 and automorphism induced by $Sp(2,\mathbb{Z})$

WEYL ALGEBRAS

- Fix $h \in \mathbb{R}$ s.t. $\hbar := h/2\pi \in \mathbb{R} \setminus \mathbb{Q}$
- ullet Choose a skew-symmetric, bilinear map $\sigma:\mathbb{Z}^2 imes\mathbb{Z}^2 o\mathbb{Z}$

$$\sigma := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Weyl *-algebra A is defined by

$$\mathcal{A} = \text{ span}_{\mathbb{C}}\{\mathbb{Z}^2 \ni m \mapsto W_m \in C^0(\mathbb{Z}^2, \mathbb{C}) \, | \ W_m W_n = e^{\imath h \sigma(m,n)} W(n+m) \, , \ (W_m)^* = W_{-m} \}$$

ORBITS OF THE SYMPLECTIC GROUP

- Symplectic group $Sp(2,\mathbb{Z}) (\equiv SI(2,\mathbb{Z}))$ acts on $\mathbb{Z}^2 \ni m \mapsto \Theta m$, with det $\Theta = 1$
- $Sp(2,\mathbb{Z}) \ni \Theta \longmapsto \Phi_{\theta} \in Aut(\mathcal{A})$ by linearity: $\Phi_{\Theta}W_m = W_{\Theta m}$
- Set of fixed points $=\{(0,0)\in\mathbb{Z}^2\}$ \Longrightarrow the action of Φ_Θ is *ergodic* on $\mathcal A$

$$\Phi_{\Theta}(\lambda W_{(0,0)}) = \lambda W_{(0,0)}$$
 for any $\lambda \in \mathbb{C}$, $\Theta \in Sp(2,\mathbb{Z})$

$Sp(2,\mathbb{Z})$ -invariant states

Definitions: A $Sp(2,\mathbb{Z})$ -invariant state ω if for any $\Phi_{\Theta} \in Aut(\mathcal{A})$, $\Theta \in Sp(2,\mathbb{Z})$ it holds

-
$$\omega(\mathfrak{a}^*\mathfrak{a}) \geq 0$$
 - $\omega(1_{\mathcal{A}}) = 1$ - $\omega(\Phi_{\Theta}\mathfrak{a}) = \omega(\mathfrak{a})$

N.B.: To construct ω , it is enough to prescribe its values on the generators of $\mathcal A$

$$\omega(W_m) = egin{cases} 1 & ext{if } m = (0,0) \\ p^{(m)} \in \mathbb{C} & ext{else} \end{cases}$$

for a sequence of values $p^{(m)}$ and then extend it by linearity to any $\mathfrak{a} \in \mathcal{A}$

Theorem

The only $Sp(2,\mathbb{Z})$ -invariant state on \mathcal{A} is the **trace state** τ defined by

$$au(W_m) = egin{cases} 1 & ext{if } m = (0,0) \\ 0 & ext{else} \end{cases}$$

N.B.:
$$\tau$$
 is obviously invariant: $\tau(\Phi_{\Theta}W_m) = \tau(W_{\Theta m}) = \begin{cases} 1 & \text{if } m = (0,0) \\ 0 & \text{else} \end{cases}$

Sketch of the proof I

Assume by contraddiction there exists $Sp(2,\mathbb{Z})$ -invariant state ω (different from τ !)

$$\omega(W_{\xi}) = egin{cases} 1 & ext{if } \xi = (0,0) \ p^{(\xi)} \in \mathbb{C} & ext{else} \end{cases}$$

<u>Goal</u>: $Sp(2,\mathbb{Z})$ -invariance $\iff p^{(\xi)} = 0$ for any $\xi \neq 0 \implies \omega \equiv \tau$

(1) By positivity and by $Sp(2,\mathbb{Z})$ -invariance, we have

$$\underbrace{\overline{\omega(W_{\xi})} = \omega(W_{\xi}^*)}_{\text{positivity of }\omega} = \omega(W_{-\xi}) = \underbrace{\omega(W_{-Id\xi}) = \omega(W_{\xi})}_{Sp(2, Z)\text{-invariace of }\omega}$$

- (2) Choosing $\mathfrak{a} = W_0 + W_{\xi} \xrightarrow{\omega(\mathfrak{a}^*\mathfrak{a}) \geq 0} 1 p^2 \leq 0$
- (3) Hence, any $Sp(2,\mathbb{Z})$ -invariant states reads as

$$\omega(W_{\xi}) = egin{cases} 1 & ext{if } \xi = (0,0) \ p^{(\xi)} \in [-1,1] & ext{else} \end{cases}$$

Sketch of the proof II

(4) Let $m, n \in \mathbb{N}$ s.t. $\frac{m}{n} \in \mathbb{N}$ and n > 1 and consider $\mathcal{V}_{d+1,n} \subset \mathcal{A}$ with elements of the form

$$\mathfrak{a} = \alpha_0 \, W_{(0,0)} + \sum_{i=1}^d \alpha_j \, W_{\Theta_j \xi} \qquad \text{ with } \Theta_j := \begin{pmatrix} 1 + \frac{m}{n} (n-1)j & \frac{m}{n} j \\ n-1 & 1 \end{pmatrix} \in \mathit{Sp}(2,\mathbb{Z})$$

- (5) For any $\mathcal{V}_{d+1,n}$, the map $\mathfrak{a}\mapsto\omega(\mathfrak{a}^*\mathfrak{a})$ is a quadratic form $\omega(\mathfrak{a}^*\mathfrak{a})=\overline{\alpha}^t\,\mathbf{H}_n\,\alpha$
- (6) The set of positive Hermitian matrices form a convex cone

$$\mathbf{P}_d = \sum_{n=1}^d \frac{1}{d} \mathbf{H}_n \ge 0$$

- (7) For fixed p exists d "big enough" s.t. $det(\mathbf{P}_d) = 1 dp^2 < 0 \Rightarrow \mathbf{P}_n \geq 0 \Rightarrow \mathbf{H}_n \geq 0$
- (8) Hence p=0 is a necessary condition for ω being an $Sp(2,\mathbb{Z})$ -invariant state

Outlook

WHAT WE DID:

- Weyl *-algebra \mathcal{A} constructed for \mathbb{Z}^{2g}
- unique $Sp(2g,\mathbb{Z})$ -invariant state on \mathcal{A} and it is the tracial state

$$\tau(\Phi_{\Theta}W_m) = \tau(W_{\theta m}) = \begin{cases} 1 & \text{if } m = (0,0) \\ 0 & \text{else} \end{cases}$$

WHAT COMES NEXT?

- assign a Weyl algebra to $(\mathcal{G}, \mathcal{S}_p)$ with generic abelian group \mathcal{G}
- classify Sp-invariant states: $\diamond \mathcal{G}$ is torsion free $\diamond \mathcal{G}$ has nontrivial torsion subgroup

Outlook

WHAT WE DID:

- Weyl *-algebra \mathcal{A} constructed for \mathbb{Z}^{2g}
- unique $Sp(2g,\mathbb{Z})$ -invariant state on \mathcal{A} and it is the tracial state

$$\tau(\Phi_{\Theta}W_m) = \tau(W_{\theta m}) = \begin{cases} 1 & \text{if } m = (0,0) \\ 0 & \text{else} \end{cases}$$

WHAT COMES NEXT?

- assign a Weyl algebra to $(\mathcal{G}, \mathcal{S}_p)$ with generic abelian group \mathcal{G}
- classify *Sp*-invariant states: $\diamond \mathcal{G}$ is torsion free $\diamond \mathcal{G}$ has nontrivial torsion subgroup

THANKS for your attention!