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PHYSICAL THEORY

measurment: (state, physical observable) > results

ALGEBRAIC APPROACH
— Observables collected into a *x-algebra A
— Symmetries implemented as algebra automorphism

— States are positive normalized linear maps w : A — C

— GNS theorem (w, A) < (%,\Uw,ww>
QUESTION: How many invariant states we can find?

© GOAL: Classify Sp(2g,Z)-invariant states on Weyl algebras
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|
Outline of the Talk

o Weyl algebras for Z> and automorphism induced by Sp(2,7)

o Classification of Sp(2,Z)-invariant states

e Outlook

» Based on:
Invariant states on Weyl algebras for the action of the symplectic group
Federico Bambozzi , S.M., Nicola Pinamonti - (arXiv:1802.02487 [math.OA])
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Wey! algebras for Z? and automorphism induced by Sp(2,7Z)

WEYL ALGEBRAS

@ Fix he R sit. h:=h/2r e R\ Q

@ Choose a skew-symmetric, bilinear map o : Z2 x 72 — 7
{0 -1
7= o

A= spanc{Z? 5 m s Wy € C%Z2,C)| WnW, = ™I W(n+ m), (Wn)" = W_n,}

@ Weyl x-algebra A is defined by

ORBITS OF THE SYMPLECTIC GROUP

@ Symplectic group Sp(2,Z)( = SI(2,Z)) acts on Z? 5 m —» ©m, with det ©=1
@ Sp(2,Z) 3 © — &y € Aut(A) by linearity: PogW;, = Wop
@ Set of fixed points = {(0,0) € Z?} = the action of ®g is ergodic on A

o (AW(0,0)) = AW[0,0) forany A € C,© € Sp(2,7)
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Sp(2, Z)-invariant states

Definitions: A Sp(2,Z)-invariant state w if for any ®g € Aut(A), © € Sp(2,Z) it holds

- w(a®a) >0 -w(ly)=1 - w(Pea) = w(a)

N.B.: To construct w, it is enough to prescribe its values on the generators of A

1 if m = (0,0)
plmM cC else

w(Wn) = {

for a sequence of values p(™ and then extend it by linearity to any a € A

Theorem

The only Sp(2, Z)-invariant state on A is the trace state 7 defined by

_J1 ifm=(0,0)
T(Wm) = {O else

1 if m=(0,0)

N.B.: 7 is obviously invariant: T(PoWn) = 7(Wonm) = {0 |
else
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Sketch of the proof |

Assume by contraddiction there exists Sp(2, Z)-invariant state w (different from 7!)

1 if £ =(0,0)
w(Wg)_{p(g)GC else

Goal: Sp(2, Z)-invariance <= pl&) =0 forany ¢ #0 —= w =7

(1) By positivity and by Sp(2,Z)-invariance, we have

w(We) = w(We) = w(W_g) = w(W_jge) = w(We)
| —_———

positivity of w 5p(2, Z)-invariace of w

(2) Choosing a = W + W, % 1-p2<0

(3) Hence, any Sp(2,Z)-invariant states reads as

1 if ¢ = (0,0)
w(We) = {p(é) €[-1,1] else
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Sketch of the proof Il

(4) Let myn € Nsit. 7 € Nand n> 1 and consider Vg, , C A with elements of the form

d
. 1+ ™(n—1); mj
a=ag W(0,0) + Z;aj W@J.g with @j = ( ”;(_ 1 )J 'iJ € 5p(2,7)
=
(5) For any Vg1 p, the map a — w(a*a) is a quadratic form w(a*a) = @' H, o

(6) The set of positive Hermitian matrices form a convex cone

1
Pd:ZanZO
n=1

(7) For fixed p exists d “big enough” s.t. det(Py) =1 —dp> <0 = P, 20 = H, #0

(8) Hence p =0 is a necessary condition for w being an Sp(2, Z)-invariant state
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Outlook

WHAT WE DID:

— Weyl %-algebra A constructed for Z2&

— unique Sp(2g,Z)-invariant state on A and it is the tracial state

T(PoWn) = 7(Wom) = {

1 if m=(0,0)
0 else

WHAT COMES NEXT?

— assign a Weyl algebra to (G, Sp) with generic abelian group G

— classify Sp-invariant states:
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WHAT WE DID:

— Weyl %-algebra A constructed for Z2&
— unique Sp(2g,Z)-invariant state on A and it is the tracial state

1 if m=(0,0)

T(PoWn) = 7(Wom) = {0 else

WHAT COMES NEXT?

— assign a Weyl algebra to (G, Sp) with generic abelian group G

— classify Sp-invariant states: ¢ G is torsion free ¢ G has nontrivial torsion subgroup

THANKS for your attention!
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