Is there a 'natural state' for Abelian Chern-Simons theory?

Simone Murro

Department of Mathematics University of Regensburg

FOUNDATIONAL AND STRUCTURAL ASPECTS OF GAUGE THEORIES

Mainz, 29th of May 2017

Locally covariant QFT: Loc → Alg

√ Isotony

√ Causality

$[\mathfrak{A}(\mathcal{M}_1),\mathfrak{A}(\mathcal{M}_2)] = \{0\}$

Time-Slice axiom

$$\mathfrak{A}(\mathcal{M}_1) \xrightarrow{\mathsf{iso}} \mathfrak{A}(\mathcal{M}_2)$$

Locally covariant QFT: Loc → Alg

√ Isotony

√ Causality

$$[\mathfrak{A}(\mathcal{M}_1),\mathfrak{A}(\mathcal{M}_2)] = \{0\}$$

Time-Slice axiom

$$\mathfrak{A}(\mathcal{M}_1) \xrightarrow{\mathsf{iso}} \mathfrak{A}(\mathcal{M}_2)$$

¿ Natural state?

$$\omega_{\mathcal{M}_2} \circ \mathfrak{f}_2 = \omega_{\mathcal{M}} = \omega_{\mathcal{M}_1} \circ \mathfrak{f}_1$$

Locally covariant QFT: Loc → Alg

√ Isotony

√ Causality

$[\mathfrak{A}(\mathcal{M}_1),\mathfrak{A}(\mathcal{M}_2)] = \{0\}$

Time-Slice axiom

$$\mathfrak{A}(\mathcal{M}_1) \xrightarrow{\mathsf{iso}} \mathfrak{A}(\mathcal{M}_2)$$

¿ Natural state?

 $\omega_{\mathcal{M}_2} \circ \mathfrak{f}_2 = \omega_{\mathcal{M}} = \omega_{\mathcal{M}_1} \circ \mathfrak{f}_1$

No-Go Theorem for dynamicalQFT: Fewster and Verch (2012)

Locally covariant QFT: Loc \rightarrow Alg

√ Isotony

√ Causality

√ Time-Slice axiom

¿ Natural state ?

 $\omega_{\mathcal{M}_2} \circ \mathfrak{f}_2 = \omega_{\mathcal{M}} = \omega_{\mathcal{M}_1} \circ \mathfrak{f}_1$

No-Go Theorem for dynamicalQFT: Fewster and Verch (2012)

GOAL: investigate 'natural state' in Topological QFT

- Abelian Chern-Simons theory
- Quantization in the algebraic approach
- Invariant functionals on compact surfaces
- ¿ Natural states?

Based on:

▶ C. Dappiaggi, S.M., A. Schenkel - Journal of Geometry and Physics 116 (2017).

The moduli space of flat U(1)-connections

- ullet We consider $\mathcal{M} \simeq \mathbb{R} \times \Sigma$ with Σ an oriented surface
- Abelian Chern–Simons theory is characterized by

$$S = \frac{1}{4\pi} \int_{\mathcal{M}} A \wedge dA$$
 with $A \in \Omega^1(\mathcal{M})$

and the solution space of the Euler-Lagrange equation is

$$\frac{\delta \mathcal{S}}{\delta \mathcal{A}} = \frac{1}{2\pi} dA = 0 \quad \Longrightarrow \quad \mathcal{S}ol(\mathcal{M}) = \Omega^1_d(\mathcal{M})$$

Taking the quotient by gauge transformations

$$A\mapsto A+rac{1}{2\pi\imath}d\log g \quad ext{with} \quad g\in C^\infty(\mathcal{M},U(1))$$

we obtain the gauge space $\frac{\Omega_d^1(M)}{\Omega_{\mathbb{Z}}^1(M)}$

• The moduli space of flat U(1)-connection:

$$\mathsf{Flat}_{\mathit{U}(1)} := \frac{\Omega^1_\mathit{d}(\mathcal{M})}{\Omega^1_\mathbb{Z}(\mathcal{M})} \simeq \frac{\mathit{H}^1(\mathcal{M};\mathbb{R})}{\mathit{H}^1(\mathcal{M};\mathbb{Z})} \simeq \frac{\mathit{H}^1(\Sigma;\mathbb{R})}{\mathit{H}^1(\Sigma;\mathbb{Z})} \simeq \frac{\Omega^1_\mathit{d}(\Sigma)}{\Omega^1_\mathbb{Z}(\Sigma)}$$

Functoriality

Consider the categories

$$\mathsf{Man}_2 = \begin{cases} \mathsf{Obj}(\mathsf{Man}_2) {=} \{ 2\text{-dimensional oriented manifolds} \} \\ \mathsf{Mor}(\mathsf{Man}_2) = \{ \text{orientation preserving open embeddings} \} \end{cases}$$

$$Ab = \begin{cases} Obj(Ab) = \{Abelian \ groups\} \\ Mor(Ab) = \{group \ homomorphisms\} \end{cases}$$

• The assignment of the moduli spaces is a functor

$$\mathsf{Flat}_{U(1)}: \mathsf{Man}^{\mathsf{op}}_2 \longrightarrow \mathsf{Ab}$$

which assigns to a morphism $f: \Sigma \to \Sigma'$ in Man₂ the corresponding

$$\mathsf{Flat}_{U(1)}(f) := f^* : \frac{\Omega^1_d(\Sigma')}{\Omega^1_{\mathbb{Z}}(\Sigma')} \longrightarrow \frac{\Omega^1_d(\Sigma)}{\Omega^1_{\mathbb{Z}}(\Sigma)} \qquad [A'] \longmapsto [f^*A']$$

Observables for Abelian Chern-Simons theory

ullet As basic osservables we take all group characters on ${\sf Flat}_{U(1)}$

$$\mathsf{Hom}\Big(\mathsf{Flat}_{U(1)}(\Sigma),U(1)\Big)$$

ullet In terms of compactly supported 1-form, we define the group characters on $\Omega^1_d(\Sigma)$

$$\Omega_d^1(\Sigma) \longmapsto U(1), \qquad A \mapsto \exp\left(2\pi i \int_{\Sigma} \varphi \wedge A\right)$$

This character descends to the quotient if and only if

$$\int_{\Sigma} \varphi \wedge \Omega^1_{\mathbb{Z}}(\Sigma) \subseteq \mathbb{Z}$$

- Since $d\Omega^0(\Sigma)\subseteq\Omega^1_{\mathbb{Z}}(\Sigma)$, Stokes' lemma implies that $\varphi\in\Omega^1_{c,d}(\Sigma)$
- Because each exact $\varphi = d\chi \in d\Omega^0_c(\Sigma)$ yields a trivial group character

$$H^1_c(\Sigma;\mathbb{Z}):=\left\{[arphi]\in H^1_c(\Sigma;\mathbb{R}):\int_\Sigmaarphi\wedge H^1(\Sigma)\subseteq\mathbb{Z}
ight\}$$

Functoriality

• The assignment of the character groups is a functor

$$H^1_c(-;\mathbb{Z}):\mathsf{Man}_2\to\mathsf{Ab}$$

which assigns to a morphism $f: \Sigma \to \Sigma'$ in Man₂ the corresponding

$$H_c^1(f;\mathbb{Z}) := f_* : H_c^1(\Sigma;\mathbb{Z}) \longrightarrow H_c^1(\Sigma';\mathbb{Z}), \quad [\varphi] \longmapsto [f_*\varphi]$$

• $H_c^1(\Sigma; \mathbb{Z})$ can be equipped with a presymplectic structure

$$\tau_{\Sigma}: H^{1}_{c}(\Sigma; \mathbb{Z}) \times H^{1}_{c}(\Sigma; \mathbb{Z}) \longrightarrow \mathbb{R} \qquad \tau([\varphi], [\widetilde{\varphi}])_{\Sigma} = \int_{\Sigma} \varphi \wedge \widetilde{\varphi}$$

• Since any morphism $f: \Sigma \to \Sigma'$ in Man₂

$$\tau_{\Sigma'}\big(f_*[\varphi],f_*[\widetilde{\varphi}]\big) = \int_{\Sigma'}(f_*\varphi) \wedge (f_*\widetilde{\varphi}) = \int_{\Sigma}\varphi \wedge (f^*f_*\widetilde{\varphi}) = \int_{\Sigma}\varphi \wedge \widetilde{\varphi} = \tau_{\Sigma}\big([\varphi],[\widetilde{\varphi}]\big) \ ,$$

the assignment of the character groups can be promoted to be a functor

$$\mathcal{O} = \left(H^1_c(-;\mathbb{Z}), au
ight) : \mathsf{Man}_2 o \mathsf{PAb}$$

Quantization of Abelian Chern-Simons theory I

- ullet Quantization is achieved as the functor $\mathcal{A}:=\mathfrak{CCR}\circ\mathcal{O}:\mathsf{Man_2} o\mathsf{CAlg}$
 - 1) We construct a \mathbb{C} -vector space $\Delta := \operatorname{span}_{\mathbb{C}} \{ W_{[\varphi]} \, | \, [\varphi] \in H^1_c(\Sigma; \mathbb{Z}) \}$
 - 2) We define the structure of an associative unital *-algebra on Δ by

$$\diamond \ W_{[\varphi]}{}^* := W_{-[\varphi]} \quad \diamond \ W_{[\varphi]} \ W_{[\widetilde{\varphi}]} := e^{-i\hbar \, \tau_{\Sigma}([\varphi], [\widetilde{\varphi}])} \ W_{[\varphi] + [\widetilde{\varphi}]} \quad \diamond \ \hbar \not \in 2\pi \mathbb{Z}$$

3) Given any Man2-morphism, we construct a *-algebra homomorphism

$$\mathcal{A}(f):\mathcal{A}(\Sigma)\to\mathcal{A}(\Sigma')\qquad \mathcal{A}(f)ig(W_{[\,\cdot\,]}ig):=W'_{f_*[\,\cdot\,]}$$

4) We complete Δ with respect to the *-norm $\|\cdot\|^{\mathsf{Ban}}$

$$\|\sum \alpha_i W_{[\varphi]_i}\|^{\mathsf{Ban}} = \sum |\alpha_i|$$

Quantization of Abelian Chern-Simons theory II

5) On Δ^{Ban} there exists a faithful state, i.e. $\omega(a^*a) \geq 0$ and $\omega(W_0) = 1$,

$$trig(W_{[arphi]}ig) := egin{cases} 1 & ext{ if } [arphi] = 0 \ 0 & ext{ else} \end{cases}$$

6) We obtain a C^* -algebra taking the completion of Δ with respect to the norm

$$||a||^{m.r.n.} := \sup_{\omega \in \mathcal{F}} \sqrt{\omega(a^*a)}$$

where ${\mathcal F}$ is the set of states on $\Delta^{\sf Ban}$

Remark: Every normalized, linear functional ω can be written as

$$\omegaig(\mathcal{W}_{[arphi]}ig) := egin{cases} 1 & ext{if } [arphi] = 0 \ \mathcal{K}_{[arphi]} & ext{else} \end{cases}$$

Invariant functionals on compact surfaces I

- \bullet Any object in Man_2 comes together with its automorphisms $\mathsf{Diff}^+(\Sigma)$ of Σ
- \bullet The functor $\mathcal{A}:\mathsf{Man}_2\to\mathsf{CAlg}$ defines a representation

$$\mathsf{Diff}^+(\Sigma) \longrightarrow \mathsf{Aut} \big(\mathcal{A}(\Sigma) \big)$$
 (1)

• Because of $\mathcal{A}(f)(W_{[\,\cdot\,]}):=W'_{f_*[\,\cdot\,]}$ and the fact that $H^1_c(\Sigma;\mathbb{Z})$ is discrete

$$\mathsf{Diff}^+_0(\Sigma)\subseteq\mathsf{Diff}^+(\Sigma)$$
 is represented trivially

• The representation (1) descends to a representation of the mapping class group

$$\mathsf{MCG}(\Sigma) := rac{\mathsf{Diff}^+(\Sigma)}{\mathsf{Diff}^+_0(\Sigma)} o \mathsf{Aut}ig(\mathcal{A}(\Sigma)ig) \qquad [f] \mapsto \mathcal{A}(f)$$

 \bullet For compact Σ , there exists a short exact sequence of groups

$$1 \longrightarrow \mathsf{Tor}(\Sigma) \longrightarrow \mathsf{MCG}(\Sigma) \longrightarrow \mathsf{Sp}(H^1(\Sigma; \mathbb{Z}), \tau_{\Sigma}) \longrightarrow 1$$

Invariant functionals on compact surfaces II

• The representation of the $\mathsf{MCG}(\Sigma)$ descends to a representation of $\mathsf{Sp}(H^1(\Sigma;\mathbb{Z}),\tau_\Sigma)$

$$\mathsf{Sp}(H^1(\Sigma;\mathbb{Z}),\tau_\Sigma) \longrightarrow \mathsf{Aut}(\mathcal{A}(\Sigma)) \;, \quad T \longmapsto \kappa_T : W_{[\varphi]} \mapsto W_{T[\varphi]}$$

An invariant functional under the action of the symplectic group

$$\omegaig(W_{\mathcal{T}[arphi]}ig) = \omegaig(W_{[arphi]}ig) := egin{cases} 1 & ext{if } [arphi] = 0 \ K_{[arphi]} & ext{else} \end{cases}$$

Remark 1: The tracial state $\left(\mathcal{K}_{[arphi]}=0 \text{ for every } arphi
ight)$ is clearly invariant

Remark 2: Since $\operatorname{Sp}(H^1(\Sigma;\mathbb{Z}), \tau_{\Sigma}) \not\subset \operatorname{O}(H^1(\Sigma;\mathbb{Z}), \mu)$, do *not* exist invariant Gaussian states

$$\omega(W_{[\varphi]}) = e^{-\mu([\varphi], [\varphi])}$$

Question: Is the tracial state the only invariant state?

Non-existence of natural states

No-go theorem: There exist *no natural states* on the functor $\mathcal{A}: \mathsf{Man}_2 \to \mathsf{CAlg}$, namely a state for each Σ such that for all Man_2 -morphisms $f: \Sigma \to \Sigma'$ holds true:

$$\omega_{\Sigma'} \circ \mathcal{A}(f) = \omega_{\Sigma}$$

Sketch of the proof

- Let us assume that there exists a natural state $\{\omega_{\Sigma}\}_{\Sigma\in\mathsf{Man}}$
- Consider the Man₂-diagram:

$$\mathbb{S}^2 \xleftarrow{f_1} \mathbb{R} \times \mathbb{S} \xrightarrow{f_2} \mathbb{T}^2$$

The naturality of the state implies:

$$\omega_{\mathbb{S}^{\mathbf{2}}} \circ \mathcal{A}(\mathit{f}_{1}) = \omega_{\mathbb{R} imes \mathbb{S}} = \omega_{\mathbb{T}^{\mathbf{2}}} \circ \mathcal{A}(\mathit{f}_{2})$$

- Because of $H^1(\mathbb{S}^2; \mathbb{Z}) = 0$, then $\mathcal{A}(\mathbb{S}^2) \simeq \mathbb{C}$ and hence $\omega_{\mathbb{S}^2} = \mathrm{id}_{\mathbb{C}}$ is unique on \mathbb{C}
- We can choose f_2 such that $W_n^{\mathbb{R} imes \mathbb{S}} \mapsto W_{(n,0)}^{\mathbb{T}^2}$ we obtain that $\omega_{\mathbb{T}^2} \big(W_{(n,0)}^{\mathbb{T}^2} \big) = 1$
- Choosing $a=\alpha_1\,1+\alpha_2\,W_{(1,1)}^{\mathbb{T}^2}+\alpha_3\,W_{(0,1)}^{\mathbb{T}^2}\in\mathcal{A}(\mathbb{T}^2)$ the functional $\omega_{\mathbb{T}^2}(a^*a)<0$

Q.E.D

Conclusions

ullet The C-S functor $\mathcal{A}: \mathsf{Man}_2 \to \mathsf{CAlg}$ violates the *isotony axiom* of LCQFT

$$\mathcal{A}(f):\mathcal{A}(\mathbb{R}\times\mathbb{S})\to\mathcal{A}(\mathbb{S}^2)$$
 is not injective

Violation of isotony seems to be a general feature of quantum gauge theories
 [Becker, Benini, Dappiaggi, Hack, Sanders, Schenkel, Szabo, ...]

"Future prospective": Possible way to solve the violation of isotony is

homotopical LCQFT := homotopical algebra + LCQFT

- Questions: (1) Can we define natural states for homotopical LCQFT?
 - (2) Is the tracial state the only invariant state?