HADAMARD STATES FOR MAXWELL THEORY BY PSEUDODIFFERENTIAL CALCULUS ${ }^{1}$

Simone Murro
Department of Mathematics
University of Genoa

Heriot-Watt Analysis Seminar
October 10, 2023

DIMA

UniGe
MUR 2023-2027
${ }^{1}$ joint project with Gabriel Schmid, Ph.D. student in Genoa

SETTING

- Spacetime is a globally hyperbolic manifold:

$$
\mathrm{M}=\mathbb{R} \times \Sigma \quad g=-\beta^{2} d t^{2}+h_{t}
$$

- Maxwell fields are $A \in \Omega^{1}(M)$ subordinated to

$$
P A=\delta d A=0
$$

DIFFICULTIES

- The operator P is 'hyperbolic' modulo a gauge transformation

$$
A \mapsto A^{\prime}=A+d f \Longrightarrow P A=0 \Leftrightarrow\left\{\begin{array}{l}
\square A^{\prime}=0 \\
\delta A^{\prime}=0
\end{array}\right.
$$

HOW CAN WE QUANTIZE IT?

\hookrightarrow what does it means "to quantize a theory"?

The algebraic approach to quantum field theory I/II

- Let $M=\mathbb{R} \times \Sigma$ be globally hyperbolic
- Let $\varphi \in C^{\infty}(\mathrm{M})$ be (complex) scalar field satisfying

$$
P \varphi=\left(-\square+m^{2}\right) \varphi=0
$$

CLASSICAL THEORY

- The Cauchy problem is well-posed:

$$
C_{c}^{\infty}(\Sigma) \oplus C_{c}^{\infty}(\Sigma)=: \mathcal{V}_{\Sigma} \simeq \operatorname{ker} P
$$

- There exists Green operators $\mathrm{G}^{ \pm}: C_{c}^{\infty}(M) \rightarrow C^{\infty}(M)$

$$
\left.\mathrm{G}^{ \pm} P\right|_{c_{c}^{\infty}(M)}=P \mathrm{G}^{ \pm}=I d \quad \operatorname{supp}\left(G^{ \pm} f\right) \subset J^{ \pm}(\operatorname{supp} f)
$$

- Phase space is characterized using the causal propagator $G:=\mathrm{G}^{+}-\mathrm{G}^{-}$

$$
\mathcal{V}_{\mathrm{P}}:=\frac{C_{c}^{\infty}(\mathrm{M})}{P C_{c}^{\infty}(\mathrm{M})} \simeq \operatorname{ker} P
$$

The algebraic approach to quantum field theory II/II
The phase space comes together with a charge, i.e. Hermitian form

$$
\mathrm{q}(g, f)=(g, \mathrm{iG} f):=\int_{M} \bar{g}(x)(\mathrm{iG} f)(x) \mathrm{vol}_{g}
$$

QUANTUM THEORY

Step 1: assign to any $v \in \mathcal{V}_{\mathrm{P}}$ an abstract element of the algebra $\operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}\right)$

$$
\text { generators: } \quad \Phi(v) \quad \Phi^{*}(v) \quad \mathbb{1}
$$

CCR relations:

$$
\begin{aligned}
& {[\Phi(v), \Phi(w)]=\left[\Phi^{*}(v), \Phi^{*}(w)\right]=0} \\
& {\left[\Phi(v), \Phi^{*}(w)\right]=\mathrm{q}(v, w) \mathbb{1}}
\end{aligned}
$$

Step 2: Construct an Hadamard states $\omega: \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}\right) \rightarrow \mathbb{C}$ defined by

$$
\text { covariances: } \Lambda^{+}(v, w):=\omega\left(\Phi(v) \Phi^{*}(w)\right) \quad \Lambda^{-}(v, w):=\omega\left(\Phi^{*}(w) \Phi(v)\right)
$$

Hadamard conditions: $W^{\prime}\left(\Lambda^{ \pm}\right) \subset \mathcal{N}^{ \pm} \times \mathcal{N}^{ \pm} \quad$ where: $\mathcal{N}=\mathcal{N}^{+} \cup \mathcal{N}^{-}$

$$
\hookrightarrow \text { Physical admissibility } \Longleftrightarrow \text { microlocal analysis }
$$

Intermezzo I: microlocal methods in AQFT

DEFINITION: Let $u \in D^{\prime}(M)$ be a distribution. We call

- singular support of u

$$
\operatorname{singsupp}(u)=\left\{p \in \mathrm{M} \mid \nexists O \ni p \text { such that }\left.u\right|_{\circ} \in C^{\infty}(O)\right\}
$$

- wavefront set of u

$$
W F(u)=\left\{(p, k) \in T^{*} M \backslash\{0\} \mid p \in \operatorname{singsupp}(u) \text { and } k \in \Sigma_{p}(u)\right\}
$$

where $\Sigma_{p}(u)=\cap_{\rho} \Sigma(\rho u)$ with $\rho(p) \neq 0$ and

$$
\begin{aligned}
& \Sigma(\rho u)=\left\{k \in \mathrm{R}^{n} \backslash\{0\} \mid \nexists \text { a conic } V \ni k\right. \text { such that } \\
& \\
& \left.|\widehat{\rho u}|\left(k^{\prime}\right) \leq C_{N}\left(1+\left|k^{\prime}\right|\right)^{-N}, \forall N \in \mathrm{~N} \text { and } \forall k^{\prime} \in V\right\} .
\end{aligned}
$$

EXAMPLE: Dirac delta distribution $\delta(x)$:

$$
\left\{\begin{array}{l}
\operatorname{singsupp}(\delta)=\{0\} \\
\widehat{(\rho \delta)}(k)=\rho(0)
\end{array} \quad \Longrightarrow W F(\delta)=\{(0, k)\}\right.
$$

Intermezzo I: microlocal methods in AQFT

DEFINITION: Let $u \in D^{\prime}(M)$ be a distribution. We call

- singular support of u

$$
\operatorname{singsupp}(u)=\left\{p \in \mathrm{M} \mid \nexists O \ni p \text { such that }\left.u\right|_{O} \in C^{\infty}(O)\right\}
$$

- wavefront set of u

$$
W F(u)=\left\{(p, k) \in T^{*} M \backslash\{0\} \mid p \in \operatorname{singsupp}(u) \text { and } k \in \Sigma_{p}(u)\right\}
$$

where $\Sigma_{p}(u)=\cap_{\rho} \Sigma(\rho u)$ with $\rho(p) \neq 0$ and

$$
\begin{aligned}
& \Sigma(\rho u)=\left\{k \in \mathrm{R}^{n} \backslash\{0\} \mid \nexists \text { a conic } V \ni k\right. \text { such that } \\
& \\
& \left.|\widehat{\rho u}|\left(k^{\prime}\right) \leq C_{N}\left(1+\left|k^{\prime}\right|\right)^{-N}, \forall N \in \mathrm{~N} \text { and } \forall k^{\prime} \in V\right\} .
\end{aligned}
$$

EXAMPLE: Covariance of an Hadamard state $\Lambda^{ \pm}$

$$
\begin{aligned}
& W F\left(\Lambda^{ \pm}\right)=\left\{\left(x, k_{x}, y, k_{y}\right) \in T^{*} M \times T^{*} M \backslash\{0\} \mid\left(x, k_{x}\right) \sim\left(y,-k_{y}\right), \pm k_{x} \triangleright 0\right\} \\
& W F^{\prime}\left(\Lambda^{ \pm}\right):=\left\{\left(x, k_{x}, y,-k_{y}\right) \in T^{*} M \times T^{*} M \backslash\{0\} \mid\left(x, k_{x}, y, k_{y}\right) \in W F\left(\Lambda^{ \pm}\right)\right\}
\end{aligned}
$$

RECIPE FOR CONSTRUCTING HADAMARD STATES

0) For simplicity we work on ultrastatic spacetimes, i.e. $g=-d t^{2}+h$
1) Replace the phase space $\left(\mathcal{V}_{P}, q\right)$ with the space of initial data $\left(\mathcal{V}_{\Sigma}, q_{\Sigma}\right)$

$$
\rho G:\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}\right) \underset{\text { unitary }}{\simeq}\left(\mathcal{V}_{\Sigma}, \mathrm{q}_{\Sigma}\right) \quad \mathrm{q}_{\Sigma}(\cdot, \cdot):=\left(\cdot, \mathrm{iG}_{\Sigma} \cdot\right) \quad \mathrm{G}=(\rho G)^{*} \mathrm{G}_{\Sigma}(\rho G)
$$

2) Construct an 'approximate' square root of the (positive) Laplacian:

$$
\varepsilon^{*}=\varepsilon \quad \varepsilon^{-1} \varepsilon=\mathbb{1} \quad \varepsilon^{2}=\Delta+r_{-\infty} \quad(\Psi \mathrm{DO}-\text { calculus })
$$

$$
\hat{\imath}
$$

microlocal factorization of $\square=\left(\partial_{t}+\mathrm{i} \varepsilon\right)\left(\partial_{t}-\mathrm{i} \varepsilon\right)-r_{-\infty} \quad$ (smoothing op.)

$$
\Uparrow \quad \pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cc}
\mathbb{1} & \pm \varepsilon^{-1} \\
\pm \varepsilon & \mathbb{1}
\end{array}\right)
$$

microlocal factorization of $\quad U_{\square}=U_{\left(\partial_{t}+\mathrm{i} \varepsilon\right)} \pi^{+}+U_{\left(\partial_{t}-\mathrm{i} \varepsilon\right)} \pi^{-}$
THEOREM [Gérard,Wrochna]: $\Lambda^{ \pm}(f, g):=\left(f, \lambda^{ \pm} g\right), \lambda^{ \pm}:= \pm \mathrm{i}^{-1} U_{\square} \pi^{ \pm} \circ(\rho \mathrm{G})$ are pseudo-covariances for a quasifree Hadamard state $\omega: \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}\right) \rightarrow \mathbb{C}$.

INTERMEZZO II: pseudodifferential calculus

The differential operator $d / d x: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$ can be written as

$$
\frac{d}{d x} f(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i k x} k \hat{f}(k) d k
$$

hence a m-order differential operator A can be written as

$$
\operatorname{Pf}(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i k x} p(x, k) \hat{f}(k) d k \quad p(x, k)=\sum_{\alpha \leq m} a_{\alpha}(x) k^{\alpha}
$$

The Kohn-Nirenberg quantization is the natural generalization

$$
S_{1,0}^{m} \ni p(x, k) \mapsto P\left(x, \frac{d}{d x}\right):=O p(p)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i k(x-y)} p(x, k) f(y) d y d k \in \Psi^{m}(\mathbb{R})
$$

where the symbol $p(x, k)$ is promoted to a smooth function in the class

$$
S_{1,0}^{m}:=\left\{\left.p \in C^{\infty}(\mathbb{R} \times \mathbb{R})| | \frac{d^{\alpha}}{d x^{\alpha}} \frac{d^{\beta}}{d k^{\beta}}(p(x, k)) \right\rvert\, \leq C_{\alpha \beta}\langle k\rangle^{m-|\beta|} \forall \alpha, \beta \in \mathbb{N}\right\}
$$

INTERMEZZO II: pseudodifferential calculus

NICE PROPERTIES:

- The $\Psi D O$-calculus transforms covariantly under local diffeomorphisms:
- $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ differomorphism
- $U_{i} \subset \mathbb{R}^{n}$ precompact open sets and $\chi_{i} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ s.t. $\chi_{i} \mid U_{i}=1$
\Rightarrow For $A \in \Psi^{m}\left(U_{1}\right)$ we have $\chi_{1} A \psi^{*}\left(\chi_{2} u\right)=B u \in \Psi^{m}\left(U_{2}\right)$
\Rightarrow the definition of $\Psi D O$ extends on smooth manifolds
- Let $S^{-\infty}:=\cap_{m} S_{1,0}^{m}$ and $\Psi^{-\infty}(M)$ accordingly:
$\Rightarrow A: D^{\prime}(M) \rightarrow C^{\infty}(M)$ is smoothing if and only if $A \in \Psi^{-\infty}(M)$
$\Rightarrow W F(A u)=\emptyset$ for any $u \in \mathrm{D}^{\prime}(M)$
- If M compact and $A \in \Psi^{m}(M)$ and $B \in \Psi^{n}(M)$
$\Rightarrow A \circ B \in \Psi^{m+n}$
\Rightarrow For polyhomogeneous symbols i.e. $\sigma_{P} \sim \sum_{j} \alpha_{j} k^{j} \Rightarrow \sigma_{A B}=\sigma_{A} \circ \sigma_{B} \in S_{p h}^{m+n}$
The Ψ DO-calculus can be extended on manifolds of bounded geometry

CONSTRUCTION OF AN 'APPROXIMATE' SQUARE ROOT OF THE LAPLACIAN

(sketch of the proof)

- Let $M=\mathbb{R} \times \Sigma$ with Σ of bounded geometry
- The closure of the Laplacian $\bar{\Delta}$ with domain $H^{2}(\Sigma)$ is self-adjoint on $L^{2}(\Sigma)$
- We fix $\chi \in C_{c}^{\infty}(\mathbb{R})$ with $\chi(0)=1$ and set $\chi_{R}(\lambda)=\chi\left(R^{-1} \lambda\right)$ for $R \geq 1$
- We get $\chi_{R}(\bar{\Delta}) \in \Psi^{-\infty}(\Sigma)$ and we set $r_{-\infty}=R \chi_{R}(\bar{\Delta})$
- By the spectral calculus we find $R>1 \mathrm{~s}$. t. $\bar{\Delta}+r-\infty$ is m-accreative
- By standard results of Kato, $\bar{\Delta}+r-\infty$ has a unique m-accreative square root

$$
\varepsilon=\varepsilon^{*} \quad \exists!\varepsilon^{-1} \in \Psi^{-1} \quad \varepsilon^{2}=\Delta+r_{-\infty}
$$

Step 1: Construct the classical phase space

$$
\begin{gathered}
\mathrm{i}\left(\cdot, \mathrm{G}_{1} \cdot\right)_{\mathrm{V}_{\mathbf{1}}}=: q_{\mathbf{1}}, \mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}(\delta)}{\operatorname{ran}(\mathrm{P})} \xrightarrow[{\text { unitary } \downarrow^{\left[\rho_{\mathbf{1}} \mathrm{G}_{\mathbf{1}}\right]}}]{\left[\mathrm{G}_{\mathbf{1}}\right]} \frac{\operatorname{ker}(\mathrm{P})}{\operatorname{ran}(d)} \\
\mathrm{i}\left(\cdot, \mathrm{G}_{1_{\Sigma}} \cdot\right) \mathrm{v}_{\rho_{\mathbf{1}}}=: q_{1_{\Sigma}}, \mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger}\right)}{\operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)} \xrightarrow{\left[\mathrm{G}_{\mathbf{1}}\right]} \xrightarrow{\left[\mathcal{U}_{\mathbf{1}}\right]}
\end{gathered} \frac{\operatorname{ker}\left(\mathrm{D}_{1}\right) \cap \operatorname{ker}(\delta)}{d\left(\operatorname{ker}\left(\mathrm{D}_{0}\right)\right)}
$$

where

$$
\begin{gathered}
\qquad(\cdot, \cdot) v_{\mathbf{1}}:=\int_{M} g^{-1}(\bar{\cdot}, \cdot) \text { vol }_{g} \\
\mathrm{P}=: \delta d \quad \text { (dynamics) } \quad d \text { (gauge freedom) } \quad \delta \text { (constraint) } \\
D_{1}:=\delta d+d \delta \quad \text { and } \quad D_{0}=\delta d \text { (auxiliary theories) }
\end{gathered}
$$

K_{Σ} (gauge freedom for initial data) $\quad \mathrm{K}_{\Sigma}^{\dagger}$ (constrained initial data)

DIFFERENCES WITH SCALAR CASE

- The fiber metric on \mathcal{V}_{Σ} is not positive definite: $g^{-1}(\cdot, \cdot)$ is Lorentzian
- Ψ DO-calculus interact badly with gauge invariance $c^{ \pm}:\left(\operatorname{ran} K_{\Sigma}\right) \circlearrowleft$

```
\(\hookrightarrow\) we fix all gauge-degrees of freedom
```

DEFINITION : $A=A_{0} d t+A_{\Sigma}$ satisfies Cauchy radiation gauge on a Σ if

$$
\delta A=0(\text { Lorenz gauge }) \quad \text { and }\left.\quad A_{0}\right|_{\Sigma}=\left.\partial_{t} A_{0}\right|_{\Sigma}=0
$$

REMARK: On ultrastatic spacetimes, the following gauge are equivalent:
(i) A satisfies the Cauchy radiation gauge;
(ii) A satisfies the temporal gauge $A_{0}=0$ and the Coulomb gauge $\delta_{\Sigma} A_{\Sigma}=0$;
(iii) The fiber metric g^{-1} reduces to h^{-1} in the Cauchy radiation gauge

$$
g^{-1}(A, A)=-\left(A_{0}, A_{0}\right)+h^{-1}\left(A_{\Sigma}, A_{\Sigma}\right)=h^{-1}\left(A_{\Sigma}, A_{\Sigma}\right) \geq 0
$$

THEOREM [M.-Schmid]: Let (Σ, h) be complete and define the Sobolev space

$$
\mathcal{H}^{s}(\Sigma)=\operatorname{dom}\left(E^{s}\right) \quad \text { where } \quad E:=\bar{\Delta}+1 \quad(\cdot, \cdot)_{H^{s}}:=\left(E^{\frac{s}{2}} \cdot, E^{\frac{s}{2}} \cdot\right)_{L^{2}}
$$

\Longrightarrow the following is a \mathcal{H}^{5}-orthogonal Hodge-type decomposition

$$
\mathcal{H}_{k}^{s}(\mathrm{M}) \cong \operatorname{Har}_{k}(\mathrm{M}) \oplus \overline{\operatorname{ran}(\overline{\mathrm{d}})} \oplus \overline{\operatorname{ran}(\bar{\delta})}
$$

and any element in $\overline{\operatorname{ran}(\overline{\mathrm{d}})} \cap \Omega^{k}(\Sigma)$ is exact

COROLLARY: $\forall A \in \Omega^{1}(\mathrm{M})$ with $\left.A\right|_{\Sigma} \in \mathcal{H}^{s}(\Sigma) \exists f \in \Omega^{0}(\mathrm{M})$ with $\left.f\right|_{\Sigma} \in \mathcal{H}^{s}(\Sigma)$ such that $A^{\prime}:=A+\mathrm{d} f$ satisfies the Cauchy radiation gauge.

Sketch of the proof: - We decompose $A=A_{0} d t+A_{\Sigma}$

- A^{\prime} satisfies the Cauchy radiation gauge if we can solve the system

$$
\begin{cases}D_{0} f & =-\delta A \\ \left.\partial_{t} f\right|_{\Sigma} & =-\left.A_{0}\right|_{\Sigma} \\ \left.\Delta_{0} f\right|_{\Sigma} & =-\left.\delta_{\Sigma} A_{\Sigma}\right|_{\Sigma}\end{cases}
$$

- Hodge-decomposition $A_{\Sigma}=d f^{\prime}+\delta \beta+h \Rightarrow \exists f$ solving $\Delta_{0} f=-\delta_{\Sigma} A_{\Sigma}$

THE GAUGE-FIXED PHASE SPACE

REMARK: f is unique (up to a constant), so the gauge is fixed completely, i.e.

$$
\frac{\operatorname{ker}(\mathrm{P})}{\operatorname{ran}(\mathrm{K})} \simeq \operatorname{ker}\left(\mathrm{D}_{1}\right) \cap \operatorname{ker}\left(\mathrm{K}^{*}\right) \cap \operatorname{ker}(\mathrm{R})
$$

where $\mathrm{R}=U_{1} \mathrm{R}_{\Sigma} \rho_{1}$ and $\mathrm{R}_{\Sigma}\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right):=\left(a_{0}, \pi_{0}, 0,0\right)$

PROPOSITION: The following diagram is commutative

We next endow \mathcal{V}_{R} with an Hermitian form $q_{\Sigma, \mathrm{R}}$

- Decomposing $A=A_{0} d t+A_{\Sigma}$, we set

$$
\rho_{0}: f \mapsto\binom{\left.f\right|_{\Sigma}}{\left.\frac{1}{\mathrm{i}} \partial_{t} f\right|_{\Sigma}} \quad \text { and } \quad \rho_{1}: A \mapsto\left(\begin{array}{c}
\left.A_{0}\right|_{\Sigma} \\
\left.\frac{1}{\mathrm{i}} \partial_{t} A_{0}\right|_{\Sigma} \\
\left.A_{\Sigma}\right|_{\Sigma} \\
\left.\frac{1}{\mathrm{i}} \partial_{t} A_{\Sigma}\right|_{\Sigma}
\end{array}\right)
$$

- By construction $\left[\rho_{1} \mathrm{G}_{1}\right]:\left(\mathcal{V}_{\mathrm{P}}, q_{1}\right) \rightarrow\left(\mathcal{V}_{\Sigma}, q_{1, \Sigma}\right)$ is an unitary isomorphism

$$
q_{1, \Sigma}([\cdot],[\cdot])=\mathrm{i}\left([\cdot], \mathrm{G}_{1, \Sigma}[\cdot]\right) \mathrm{v}_{\rho_{\mathbf{1}}} \quad \mathrm{G}_{1, \Sigma}=\frac{1}{\mathrm{i}}\left(\begin{array}{cccc}
0 & -\mathbb{1} & 0 & 0 \\
-\mathbb{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbb{1} \\
0 & 0 & \mathbb{1} & 0
\end{array}\right)
$$

- We define $q_{\Sigma, R}$ such that $T_{\Sigma}:\left(\mathcal{V}_{\Sigma,} q_{1, \Sigma}\right) \rightarrow\left(\mathcal{V}_{R}, q_{\Sigma, R}\right)$ is unitary

$$
\mathrm{q} \Sigma, \mathrm{R}(\cdot, \cdot)=\mathrm{i}\left(\cdot \mathrm{G}_{\Sigma, \mathrm{R}} \cdot\right) \mathrm{v}_{\rho_{\mathbf{1}}} \quad \mathrm{G}_{\Sigma, \mathrm{R}}=\frac{1}{\mathrm{i}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbb{1} \\
0 & 0 & \mathbb{1} & 0
\end{array}\right)
$$

Summing up: unitary isomorphisms $\left(\mathcal{V}_{\mathrm{P}}, q_{1}\right) \simeq\left(\mathcal{V}_{\Sigma}, q_{1, \Sigma}\right) \simeq\left(\mathcal{V}_{\mathrm{R}}, q_{\Sigma, \mathrm{R}}\right)$

HOW TO CONTROL THE MICROLOCAL BEHAVIOUR OF T_{Σ} ?

To compute T_{Σ} we follows this ansatz

$$
T_{\Sigma}=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}
$$

PROPOSITION: Set $\pi_{\delta}:=\mathbb{1}-\mathrm{d}_{\Sigma} \Delta_{0}^{-1} \delta_{\Sigma}$. Then the operator defined by

$$
T_{\Sigma}=\left(\begin{array}{cc}
0_{2 \times 2} & 0_{2 \times 2} \\
0_{2 \times 2} & \left(\begin{array}{cc}
\pi_{\delta} & 0 \\
0 & \pi_{\delta}
\end{array}\right)
\end{array}\right)
$$

satisfies the following properties
(i) $T_{\Sigma}=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}$ on $\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger}\right)$
(ii) $\mathrm{T}_{\Sigma}^{2}=\mathrm{T}_{\Sigma}$ and $\mathrm{T}_{\Sigma} \mid \mathcal{\nu}_{\mathrm{R}}=\mathbb{1}$;
(iii) $\operatorname{ker}\left(\mathrm{T}_{\Sigma}\right)=\operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)$;
(iv) $\operatorname{ran}\left(T_{\Sigma}\right)=\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma}\right)$.

NEW RECIPE FOR CONSTRUCTING HADAMARD STATES

0) By the standard deformation argument, we assume

$$
(\mathrm{M}, g) \text { to be ultrastatic and of bounded geometry }
$$

1) Using pseudodifferential calculus and spectral calculus, we can construct a square root ϵ_{i} of the Hodge-Laplacian Δ_{i} satisfying

$$
\epsilon_{i} \pi_{\delta}=\pi_{\delta} \varepsilon_{i} \quad \text { modulo } \Psi^{-\infty}
$$

where again $\pi_{\delta}=\mathbb{1}-\mathrm{d}_{\Sigma} \Delta_{0}^{-1} \delta_{\Sigma}$
2) Finally consider the pseudodifferential projectors $\pi^{ \pm}$defined by

$$
\pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cccc}
\mathbb{1} & \pm \varepsilon_{0}^{-1} & 0 & 0 \\
\pm \varepsilon_{0} & \mathbb{1} & 0 & 0 \\
0 & 0 & \mathbb{1} & \pm \varepsilon_{1}^{-1} \\
0 & 0 & \pm \varepsilon_{1} & \mathbb{1}
\end{array}\right)
$$

THEOREM [M.-Schmid]
The operators $\quad c^{ \pm}: \mathcal{V}_{\Sigma}:=\frac{\operatorname{ker} K_{\Sigma}^{\dagger}}{\operatorname{ran} K_{\Sigma}} \rightarrow L^{2}(\mathrm{M}) \quad c^{ \pm}:=\mathrm{T}_{\Sigma} \pi^{ \pm} \mathrm{T}_{\Sigma}$

$$
T_{\Sigma}=\left(\begin{array}{cc}
0_{2 \times 2} & 0_{2 \times 2} \\
0_{2 \times 2} & \left(\begin{array}{cc}
\pi_{\delta} & 0 \\
0 & \pi_{\delta}
\end{array}\right)
\end{array}\right) \quad \pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cccc}
\mathbb{1} & \pm \varepsilon_{0}^{-1} & 0 & 0 \\
\pm \varepsilon_{0} & \mathbb{1} & 0 & 0 \\
0 & 0 & \mathbb{1} & \pm \varepsilon_{1}^{-1} \\
0 & 0 & \pm \varepsilon_{1} & \mathbb{1}
\end{array}\right)
$$

have the following properties:

$$
\begin{align*}
& \left(c^{ \pm}\right)^{\dagger}=c^{ \pm} \quad \text { and } \quad c^{ \pm}\left(\operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)\right) \subset \operatorname{ran}\left(\mathrm{K}_{\Sigma}\right) \tag{i}\\
& \left(c^{+}+c^{-}\right) \mathfrak{f}=\mathfrak{f} \quad \bmod \quad \operatorname{ran}\left(\mathrm{K}_{\Sigma}\right) \quad \forall \mathfrak{f} \in \operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger}\right) \tag{ii}\\
& \pm \mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, c^{ \pm} \mathfrak{f}\right) \geq 0 \quad \forall \mathfrak{f} \in \operatorname{ker}\left(\mathrm{~K}_{\Sigma}^{\dagger}\right) \tag{iii}\\
& \mathrm{WF}^{\prime}\left(U_{1} c^{ \pm}\right) \subset\left(\mathcal{N}^{ \pm} \cup F\right) \times \mathrm{T}^{*} \Sigma \text { for } F \subset T^{*} M \tag{iv}
\end{align*}
$$

In other words,

$$
\lambda^{ \pm}:= \pm \mathrm{i}^{-1} U_{1} c^{ \pm} \circ\left(\rho_{1} \mathrm{G}_{1}\right)
$$

are the pseudo-covariances of a quasi-free Hadamard state on $\operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \mathrm{q}_{1}\right)$.

Sketch of the proof

(i) Since $\varepsilon_{i}=\varepsilon_{i}^{*}$ are formally self-adjointw.r.t the Hodge-inner product on Σ

$$
\left(\pi^{ \pm}\right)^{\dagger}=\mathrm{G}_{1, \Sigma}^{-1}\left(\pi^{ \pm}\right)^{*} \mathrm{G}_{1, \Sigma}=\pi^{ \pm},
$$

Then $\pi^{ \pm}, \mathrm{T}_{\Sigma}$ and also $c^{ \pm}$are formally self-adjoint w.r.t. $\sigma_{1, \Sigma}$.
(ii) $\pi^{+}+\pi^{-}=\mathbb{1}$ on $\Gamma_{\mathrm{H}}^{\infty}\left(\mathrm{V}_{\rho_{1}}\right)$ and hence

$$
\left(c^{+}+c^{-}\right) \mathfrak{f}=T_{\Sigma}^{2} \mathfrak{f}=T_{\Sigma} \mathfrak{f}=\mathfrak{f} \quad \bmod \quad \operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)
$$

for all $\mathfrak{f} \in \operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger}\right)$, where in the last step we used that T_{Σ} is a bijection between \mathcal{V}_{P} and \mathcal{V}_{Σ} together with $T_{\Sigma}=\mathbb{1}$ on $\operatorname{ker}^{2} \mathrm{R}_{\Sigma}$.
(iii) we compute

$$
\pm \mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, c^{ \pm} f\right)= \pm \mathrm{q}_{1, \Sigma}\left(\mathfrak{f}, \mathrm{~T}_{\Sigma} \pi^{ \pm} \mathrm{T}_{\Sigma} f\right)= \pm \mathrm{q}_{\Sigma, \mathrm{R}}\left(\mathrm{~T}_{\left.\Sigma \mathfrak{f}, \pi^{ \pm} \mathrm{T}_{\Sigma} f\right) \geq 0.00 .}\right.
$$

(iv) follows because $\pi^{ \pm}$commutes with T_{Σ} modulo a smooth kernel and $\pi^{ \pm}$ satisfies the Hadamard condition

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

MAXWELL'S THEORY:

- Gauge fixing is useful for getting positivity and gauge invariance

FUTURE WORK: LINEARIZED GRAVITY

- Gauge fixing completely the linearized gravity on the level of initial data: Synchronous, de Donder, traceless-gauge, ...
- Constructing T_{Σ} is very challenging from a technical point of view (two-tensors can make life miserable very fast)
- We cannot use the deformation argument, so we need to modify $\pi^{ \pm}$such that the operators $c^{ \pm}=T_{\Sigma} \pi^{ \pm} T_{\Sigma}$ satisfies the Hadamard conditions

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

MAXWELL'S THEORY:

- Gauge fixing is useful for getting positivity and gauge invariance

FUTURE WORK: LINEARIZED GRAVITY

- Gauge fixing completely the linearized gravity on the level of initial data: Synchronous, de Donder, traceless-gauge, ...
- Constructing T_{Σ} is very challenging from a technical point of view (two-tensors can make life miserable very fast)
- We cannot use the deformation argument, so we need to modify $\pi^{ \pm}$such that the operators $c^{ \pm}=T_{\Sigma} \pi^{ \pm} T_{\Sigma}$ satisfies the Hadamard conditions

> THANKS for your attention!

