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SETTING

- Spacetime is a globally hyperbolic manifold:

M = R× Σ g = −β2dt2 + ht

- Maxwell fields are A ∈ Ω1(M) subordinated to

PA = δdA = 0

DIFFICULTIES

- The operator P is ‘hyperbolic’ modulo a gauge transformation

A 7→ A′ = A + df =⇒ PA = 0⇔

{
�A′ = 0
δA′ = 0

HOW CAN WE QUANTIZE IT?

↪→ what does it means "to quantize a theory"?
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The algebraic approach to quantum field theory I/II

- Let M = R× Σ be globally hyperbolic

- Let ϕ ∈ C∞(M) be (complex) scalar field satisfying

Pϕ = (−� + m2)ϕ = 0

CLASSICAL THEORY

- The Cauchy problem is well-posed:

C∞c (Σ)⊕ C∞c (Σ) =: VΣ ' ker P

- There exists Green operators G± : C∞c (M)→ C∞(M)

G±P|C∞c (M) = PG± = Id supp(G±f ) ⊂ J±(suppf )

- Phase space is characterized using the causal propagator G := G+ − G−

VP :=
C∞c (M)

PC∞c (M)
' ker P
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The algebraic approach to quantum field theory II/II

The phase space comes together with a charge, i.e. Hermitian form

q(g , f ) = (g , iGf ) :=

ˆ
M

g(x)(iGf )(x)volg

QUANTUM THEORY

Step 1: assign to any v ∈ VP an abstract element of the algebra CCR(VP, q)

generators: Φ(v) Φ∗(v) 1

CCR relations:
[Φ(v),Φ(w)] = [Φ∗(v),Φ∗(w)] = 0

[Φ(v),Φ∗(w)] = q(v ,w)1

Step 2: Construct an Hadamard states ω : CCR(VP, q)→ C defined by

covariances: Λ+(v ,w) := ω(Φ(v)Φ∗(w)) Λ−(v ,w) := ω(Φ∗(w)Φ(v))

Hadamard conditions: WF′(Λ±) ⊂ N± ×N± where: N = N+ ∪N−

↪→ Physical admissibility ⇐⇒ microlocal analysis
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Intermezzo I: microlocal methods in AQFT

DEFINITION: Let u ∈ D ′(M) be a distribution. We call

singular support of u

singsupp(u) = {p ∈ M | 6 ∃O 3 p such that u|O ∈ C∞(O)}.

wavefront set of u

WF (u) = {(p, k) ∈ T ∗M \ {0} | p ∈ singsupp(u) and k ∈ Σp(u)},

where Σp(u) = ∩ρΣ(ρu) with ρ(p) 6= 0 and

Σ(ρu) = {k ∈ Rn \ {0} | 6 ∃ a conic V 3 k such that

|ρ̂u|(k ′) ≤ CN(1 + |k ′|)−N , ∀N ∈ N and ∀k ′ ∈ V }.

EXAMPLE: Dirac delta distribution δ(x):singsupp(δ) = {0}

(̂ρδ)(k) = ρ(0)
=⇒ WF (δ) = {(0, k)}
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where Σp(u) = ∩ρΣ(ρu) with ρ(p) 6= 0 and

Σ(ρu) = {k ∈ Rn \ {0} | 6 ∃ a conic V 3 k such that

|ρ̂u|(k ′) ≤ CN(1 + |k ′|)−N , ∀N ∈ N and ∀k ′ ∈ V }.

EXAMPLE: Covariance of an Hadamard state Λ±

WF (Λ±) = {(x , kx , y , ky ) ∈ T ∗M × T ∗M \ {0} | (x , kx) ∼ (y ,−ky ),±kx . 0}

WF ′(Λ±) := {(x , kx , y ,−ky ) ∈ T ∗M × T ∗M \ {0} | (x , kx , y , ky ) ∈WF (Λ±)}
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RECIPE FOR CONSTRUCTING HADAMARD STATES

0) For simplicity we work on ultrastatic spacetimes, i.e. g = −dt2 + h

1) Replace the phase space (VP, q) with the space of initial data (VΣ, qΣ)

ρG : (VP, q)
'−−−−→

unitary
(VΣ, qΣ) qΣ(·, ·) := (· , iGΣ·) G = (ρG)∗GΣ(ρG)

2) Construct an ‘approximate’ square root of the (positive) Laplacian:

ε∗ = ε ε−1ε = 1 ε2 = ∆ + r−∞ (ΨDO–calculus)

m ↘
microlocal factorization of � = (∂t + iε)(∂t − iε)− r−∞ (smoothing op.)

m π±:= 1
2

(
1 ±ε−1

±ε 1

)
microlocal factorization of U� = U(∂t+iε)π

+ + U(∂t−iε)π
−

THEOREM [Gérard,Wrochna]: Λ±(f , g) := (f , λ±g) , λ± := ±i−1U�π
± ◦ (ρG)

are pseudo-covariances for a quasifree Hadamard state ω : CCR(VP, q)→ C.
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INTERMEZZO II: pseudodifferential calculus

The differential operator d/dx : S(R)→ S(R) can be written as

d

dx
f (x) =

1√
2π

ˆ
R
e ikxkf̂ (k) dk

hence a m-order differential operator A can be written as

Pf (x) =
1√
2π

ˆ
R
e ikxp(x , k)f̂ (k)dk p(x , k) =

∑
α≤m

aα(x)kα

The Kohn-Nirenberg quantization is the natural generalization

Sm
1,0 3 p(x , k) 7→ P

(
x ,

d

dx

)
:= Op(p) =

1√
2π

ˆ
R

ˆ
R
e ik(x−y)p(x , k)f (y)dy dk ∈ Ψm(R)

where the symbol p(x , k) is promoted to a smooth function in the class

Sm
1,0 :=

{
p ∈ C∞(R× R)

∣∣∣ ∣∣∣∣ dαdxα
dβ

dkβ
(p(x , k))

∣∣∣∣ ≤ Cαβ〈k〉m−|β| ∀α, β ∈ N
}
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INTERMEZZO II: pseudodifferential calculus

NICE PROPERTIES:

• The ΨDO–calculus transforms covariantly under local diffeomorphisms:

- ψ : Rn → Rn differomorphism

- Ui ⊂ Rn precompact open sets and χi ∈ C∞c (Rn) s.t. χi |Ui = 1

⇒ For A ∈ Ψm(U1) we have χ1Aψ
∗(χ2u) = Bu ∈ Ψm(U2)

⇒ the definition of ΨDO extends on smooth manifolds

• Let S−∞ := ∩mS
m
1,0 and Ψ−∞(M) accordingly:

⇒ A : D ′(M)→ C∞(M) is smoothing if and only if A ∈ Ψ−∞(M)

⇒ WF (Au) = ∅ for any u ∈ D′(M)

• If M compact and A ∈ Ψm(M) and B ∈ Ψn(M)

⇒ A ◦ B ∈ Ψm+n

⇒ For polyhomogeneous symbols i.e. σP ∼
∑

j αjk
j ⇒ σAB = σA ◦ σB ∈ Sm+n

ph

The ΨDO–calculus can be extended on manifolds of bounded geometry

Simone Murro (University of Genoa) Hadamard states for Maxwell theory Heriot-Watt Analysis Seminar 7 / 18



CONSTRUCTION OF AN ‘APPROXIMATE’ SQUARE ROOT OF THE LAPLACIAN

(sketch of the proof)

- Let M = R× Σ with Σ of bounded geometry

- The closure of the Laplacian ∆ with domain H2(Σ) is self-adjoint on L2(Σ)

- We fix χ ∈ C∞c (R) with χ(0) = 1 and set χR(λ) = χ(R−1λ) for R ≥ 1

- We get χR(∆) ∈ Ψ−∞(Σ) and we set r−∞ = RχR(∆)

- By the spectral calculus we find R > 1 s. t. ∆ + r−∞ is m-accreative

- By standard results of Kato, ∆ + r−∞ has a unique m-accreative square root

ε = ε∗ ∃!ε−1 ∈ Ψ−1 ε2 = ∆ + r−∞
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HOW TO QUANTIZE MAXWELL’S THEORY?

↪→ as a gauge theory

Step 1: Construct the classical phase space

i(·,G1·)V1 =: q1 , VP :=
ker(δ)

ran(P)

ker(P)

ran(d)

i(·,G1Σ ·)Vρ1
=: q1Σ , VΣ :=

ker(K†Σ)

ran(KΣ)

ker(D1) ∩ ker(δ)

d(ker(D0))

[G1]

[G1]
[ρ1G1]unitary

[U1]

[j]

where
(·, ·)V1 :=

ˆ
M
g−1(·, ·) volg

P =: δd (dynamics) d (gauge freedom) δ (constraint)

D1 := δd + dδ and D0 = δd (auxiliary theories)

KΣ (gauge freedom for initial data) K†Σ (constrained initial data)
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HOW TO CONSTRUCT HADAMARD STATES FOR A GAUGE THEORY?

DIFFERENCES WITH SCALAR CASE

- The fiber metric on VΣ is not positive definite: g−1(·, ·) is Lorentzian

- ΨDO–calculus interact badly with gauge invariance c± : (ranKΣ) 	

↪→ we fix all gauge-degrees of freedom

DEFINITION: A = A0dt + AΣ satisfies Cauchy radiation gauge on a Σ if

δA = 0 (Lorenz gauge) and A0|Σ = ∂tA0|Σ = 0

REMARK: On ultrastatic spacetimes, the following gauge are equivalent:
(i) A satisfies the Cauchy radiation gauge;
(ii) A satisfies the temporal gauge A0 = 0 and the Coulomb gauge δΣAΣ = 0;
(iii) The fiber metric g−1 reduces to h−1 in the Cauchy radiation gauge

g−1(A,A) = −(A0,A0) + h−1(AΣ,AΣ) = h−1(AΣ,AΣ) ≥ 0
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THEOREM [M.–Schmid]: Let (Σ, h) be complete and define the Sobolev space

Hs(Σ) = dom(E s) where E := ∆ + 1 (·, ·)Hs := (E
s
2 ·,E

s
2 ·)L2

=⇒ the following is a Hs -orthogonal Hodge-type decomposition

Hs
k(M) ∼= Hark(M)⊕ ran(d)⊕ ran(δ)

and any element in ran(d) ∩ Ωk(Σ) is exact

COROLLARY: ∀ A ∈ Ω1(M) with A|Σ ∈ Hs(Σ) ∃ f ∈ Ω0(M) with f |Σ ∈ Hs(Σ)

such that A′ := A + df satisfies the Cauchy radiation gauge.

Sketch of the proof: - We decompose A = A0dt + AΣ

- A′ satisfies the Cauchy radiation gauge if we can solve the system
D0f = −δA
∂t f |Σ = −A0|Σ
∆0f |Σ = −δΣAΣ|Σ

- Hodge-decomposition AΣ = df ′ + δβ + h ⇒ ∃ f solving ∆0f = −δΣAΣ
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THE GAUGE-FIXED PHASE SPACE

REMARK: f is unique (up to a constant), so the gauge is fixed completely, i.e.

ker(P)

ran(K)
' ker(D1) ∩ ker(K∗) ∩ ker(R)

where R = U1RΣρ1 and RΣ(a0, π0, aΣ, πΣ) := (a0, π0, 0, 0)

PROPOSITION: The following diagram is commutative

VP :=
ker(K∗)
ran(P)

ker(P)

ran(K|ΓR )

VΣ :=
ker(K†Σ)

ran(KΣ)

ker(D1) ∩ ker(K∗)
K(ker(D0))

VR := ker(K†Σ) ∩ ker(RΣ) ker(D1) ∩ ker(K∗) ∩ ker(R)

[G1]

[G1]
[ρ1G1]

[U1]

TΣ

U1
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We next endow VR with an Hermitian form qΣ,R

- Decomposing A = A0dt + AΣ, we set

ρ0 : f 7→
(

f |Σ
1
i ∂t f |Σ

)
and ρ1 : A 7→


A0|Σ

1
i ∂tA0|Σ
AΣ|Σ

1
i ∂tAΣ|Σ


- By construction [ρ1G1] : (VP, q1)→ (VΣ, q1,Σ) is an unitary isomorphism

q1,Σ([·], [·]) = i([·],G1,Σ[·])Vρ1
G1,Σ =

1
i


0 −1 0 0
−1 0 0 0
0 0 0 1

0 0 1 0


- We define qΣ,R such that TΣ : (VΣ, q1,Σ)→ (VR, qΣ,R) is unitary

qΣ,R(·, ·) = i(·GΣ,R·)Vρ1
GΣ,R =

1
i


0 0 0 0
0 0 0 0
0 0 0 1

0 0 1 0


Summing up: unitary isomorphisms (VP, q1) ' (VΣ, q1,Σ) ' (VR, qΣ,R)
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HOW TO CONTROL THE MICROLOCAL BEHAVIOUR OF TΣ?

To compute TΣ we follows this ansatz

TΣ = 1− KΣ(RΣKΣ)−1RΣ

PROPOSITION: Set πδ := 1− dΣ∆−1
0 δΣ. Then the operator defined by

TΣ =

02×2 02×2

02×2

(
πδ 0
0 πδ

)
satisfies the following properties

(i) TΣ = 1− KΣ(RΣKΣ)−1RΣ on ker(K†Σ)

(ii) T2
Σ = TΣ and TΣ|VR = 1;

(iii) ker(TΣ) = ran(KΣ);

(iv) ran(TΣ) = ker(K†Σ) ∩ ker(RΣ).
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NEW RECIPE FOR CONSTRUCTING HADAMARD STATES

0) By the standard deformation argument, we assume

(M, g) to be ultrastatic and of bounded geometry

1) Using pseudodifferential calculus and spectral calculus, we can construct a
square root εi of the Hodge-Laplacian ∆i satisfying

εiπδ = πδεi modulo Ψ−∞

where again πδ = 1− dΣ∆−1
0 δΣ

2) Finally consider the pseudodifferential projectors π± defined by

π± :=
1
2


1 ±ε−1

0 0 0
±ε0 1 0 0
0 0 1 ±ε−1

1
0 0 ±ε1 1


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THEOREM [M.–Schmid]

The operators c± : VΣ :=
kerK †Σ
ranKΣ

→ L2(M) c± := TΣπ
±TΣ

TΣ =

02×2 02×2

02×2

(
πδ 0
0 πδ

) π± :=
1
2


1 ±ε−1

0 0 0
±ε0 1 0 0
0 0 1 ±ε−1

1
0 0 ±ε1 1


have the following properties:

(i) (c±)† = c± and c±(ran(KΣ)) ⊂ ran(KΣ)

(ii) (c+ + c−)f = f mod ran(KΣ) ∀f ∈ ker(K†Σ)

(iii) ± q1,Σ(f, c±f) ≥ 0 ∀f ∈ ker(K†Σ)

(iv) WF′(U1c
±) ⊂ (N± ∪ F )× T∗Σ for F ⊂ T ∗M

In other words,
λ± := ±i−1U1c

± ◦ (ρ1G1)

are the pseudo-covariances of a quasi-free Hadamard state on CCR(VP, q1).
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Sketch of the proof

(i) Since εi = ε∗i are formally self-adjointw.r.t the Hodge-inner product on Σ

(π±)† = G−1
1,Σ(π±)∗G1,Σ = π± ,

Then π±, TΣ and also c± are formally self-adjoint w.r.t. σ1,Σ .

(ii) π+ + π− = 1 on Γ∞H (Vρ1) and hence

(c+ + c−)f = T 2
Σf = TΣf = f mod ran(KΣ)

for all f ∈ ker(K†Σ), where in the last step we used that TΣ is a bijection between
VP and VΣ together with TΣ = 1 on kerRΣ.

(iii) we compute

±q1,Σ(f, c±f ) = ±q1,Σ(f,TΣπ
±TΣf ) = ±qΣ,R(TΣf, π

±TΣf ) ≥ 0

(iv) follows because π± commutes with TΣ modulo a smooth kernel and π±

satisfies the Hadamard condition
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Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

MAXWELL’S THEORY:

- Gauge fixing is useful for getting positivity and gauge invariance

FUTURE WORK: LINEARIZED GRAVITY

- Gauge fixing completely the linearized gravity on the level of initial data:
Synchronous, de Donder, traceless-gauge, . . .

- Constructing TΣ is very challenging from a technical point of view
(two-tensors can make life miserable very fast)

- We cannot use the deformation argument, so we need to modify π± such
that the operators c± = TΣπ

±TΣ satisfies the Hadamard conditions

THANKS for your attention!
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