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Motivation

EINSTEIN 1915

Gravitation interaction ←→ Lorentzian manifold (M, g)

Ric + g (Λ−
1
2
scal) =

8πG
c4 T

GEOMETRY: Ric: Ricci (0,2)-tensor, scal: scalar curvature

MATTER: T: stress-egenergy (0,2)-tensor

PHYSICS: Λ: cosmological constant, G: gravitational constant , c: speed of light

(using the contracted) BIANCHI’S IDENTITY

div(Ric− scal
2 g) = 0

gαγ∇γ(Rαβ − 1
2 gαβR) = 0

−→ div(T) = 0

gαγ∇γTαβ = 0︸ ︷︷ ︸
PDEs

GOAL: Well-posedness of the Cauchy problem for the Dirac operator
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Outline of the Talk

Outline of the Talk

• Mathematical Preliminaries

• Lorentzian Manifolds: the Spacetime’s Geometry

• Spin Geometry in a Nutshell

• The Cauchy Problem for the Dirac Operator

• Existence and Uniqueness in a Time Strip

• Global Well-Posedness

• Outlook

I Based on :
The well-posedness of the Cauchy problem for the Dirac operator on globally hyperbolic
manifolds with timelike boundary, Nadine Große and S.M. (arXiv:1806.06544 [math.DG])
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Mathematical Preliminaries

Lorentzian Manifolds: the Spacetime’s Geometry

Given a Lorentzian manifold (M, g) we denote

- v ∈ TpM: spacelike if g(v , v) > 0, lightlike if g(v , v) = 0, timelike if g(v , v) < 0

- γ : I →M: spacelike if g(γ̇, γ̇) > 0, lightlike if g(γ̇, γ̇) = 0, timelike if g(γ̇, γ̇) < 0

- future/past J±(p) = {p} ∪ {q ∈M : future/past directed causal curve from p to q}

Definition: LetM of a connected, time-oriented, oriented Lorentzian manifold

- Cauchy hypersurface Σ: if each inextendible timelike curve γ ∩ Σ = {pt}

- Globally hyperbolic: M strongly causal and ∀p, q ∈M,J+(p) ∩ J−(q) compact

Bernal-Sánchez’s Theorem: Then the following are equivalent.
(i) M is globally hyperbolic;

(ii) There exists a Cauchy hypersurface Σ ⊂M;

(iii) M isometric to R× Σ with metric −β2dt2 + ht , where β ∈ C∞(M, (0,∞)

- ht is a Riemannian metric on Σ depending smoothly on t ∈ R
- all sets {t0} × Σ are Cauchy hypersurfaces inM

Example: Minkoski spacetime (R4, η), Schwarzchild spacetime (R2 × S2, gS )

NOT Example: anti-de Sitter space (S1 × R3, gadS ), Gödel universe (R4, gG )
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Mathematical Preliminaries

Spin Geometry in a Nutshell

Definition: M be a connected, time-oriented, oriented, n + 1-dim Lorentzian manifold

- Spinor bundle SM: complex vector bundle with N := 2b
n+1
2 c-dimensional fibers

endowed with fiberwise pairing given by the canonical scalar product on CN

〈· | ·〉 : SpM× SpM→ C

and a clifford multiplication: fiber-preserving map γ : TM→ End(SM)

- Spin Manifold: manifold which admits a spinor bundle

- Dirac operator: D : Γ(SM)→ Γ(SM) which in local coordinates this reads as

D =
n∑
µ=0

ıγ(eµ)∇eµ

where (eµ)µ=0,...,n is a local orthonormal Lorentzian frame of TM and

γ(u)γ(v) + γ(v)γ(u) = −2g(u, v) for every u, v ∈ TpM and p ∈M.

Remarks:
(i) Topological obstruction to existence of a spinor bundle;
(ii) Existence of spinor bundles on parallelizable manifolds;
(iii) The Dirac Cauchy problem is well posed on glob. hyp. spin manifolds with ∂M = ∅
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Cauchy Problem

Our Setting: Globally Hyperbolic Spin Manifolds with Nonempty Boundary

- Let (M̃, g) be a globally hyperbolic spin manifold of dimension n + 1 ≥ 3

- Let (N , g |N ) be a submanifold of (M̃, g) that is itself globally hyperbolic

- Let Σ̃ be a smooth spacelike Cauchy surface of M̃

- Then, Σ̂ := Σ̃ ∩N is a spacelike Cauchy surface for N

- We assume that N divides M̃ into two connected components

- The closure of one of them we denote byM

Definition: We callM globally hyperbolic manifold with timelike boundary

- On M̃ we choose a Cauchy time function t : M̃ → R

- Then {t−1(s)}s∈R gives a foliation by Cauchy surfaces

- We set Σs := t−1(s) ∩M.

- For n + 1 = 2,M is homeomorphic to R× [a,∞) or R× [a, b])
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Cauchy Problem

MAIN THEOREM

- (M, g) be a globally hyperbolic spin manifold with timelike boundary ∂M;

- SM→M be the spinor bundle and D : Γ(SM)→ Γ(SM) be Dirac operator ;

- linear, non-invertible M : Γ(S∂M)→ Γ(S∂M) with constant kernel dimension s.t.

Mψ|∂M = 0 and M†ψ|∂M = 0 =⇒ 〈ψ | γ(e0)γ(n)ψ〉q = 0 .

.
Then the Cauchy problem for the Dirac operator is well-posed:

(I) ∀ f ∈ Γcc (SM) and ∀h ∈ Γcc (SΣ0) exists a unique ψ ∈ Γsc (SM) such that
Dψ = f

ψ|Σ0 = h

Mψ|∂M = 0
(1)

(II) moreover Γcc (SM)× Γcc (SΣ0) 3 (f , h) 7→ ψ ∈ Γsc (SM) is continuous;

Example: MIT boundary condition M = (γ(n)− ı))

( γ(n) denotes Clifford multiplication for n , the outward unit normal on ∂M)

Remark: The Cauchy problem (1) is still well-posed for (f , h) ∈ Γc (SM)× Γc (SΣ0)
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Cauchy Problem

Reformulation of the Cauchy Problem I
Symmetric Positive Hyperbolic Systems

- E →M be a complex vector bundle with finite rank N and fiberwise metric 〈· | ·〉
- L : Γ(E)→ Γ(E) with formal L2-adjoint L†

(· | ·)M :=

ˆ
M
〈· | ·〉VolM ,

Definition: a 1st order L is called symmetric positive hyperbolic system if

(S) σL(ξ) : Ep → Ep is Hermitian with respect to 〈· | ·〉, ∀ξ ∈ T∗pM and ∀p ∈M.

(P) 〈 (L + L†) · | ·〉 on Ep is positive definite

(H) 〈σL(τ) · | ·〉 is positive definite on Ep , for any future-directed timelike τ ∈ T∗pM

In local coordinates (t, x1, . . . , xn) onM and a local trivialization of E :

L := A0(p)∂t +
n∑
j=i

Aj (p)∂x j + B(p) A0,Aj ,B ∈ C∞(M,Mat(N × N))

(S) A0 = A†0 , Aj = A†j (P) κ := L + L† = B − ∂t(
√
g)A0)−

n∑
j=1

∂x j (
√
gAj ) > 0

(H) σL(τ) = A0 +

N−1∑
j=1

αjAj > 0 for any τ = dt +
∑
j

αjdx
j
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Cauchy Problem

Reformulation of the Cauchy Problem II

NOT Example: M 4 := R3 × [0,∞) endowed with the element line

ds2 = −dt2 + dx2 + dy2 + dz2 .

For the Dirac operator D = ıγ(e0)∂t + ıγ(e1)∂x + ıγ(e2)∂y + ıγ(e3)∂z we have

(S) γ(ej )
† = −γ(ej ) E (P) κ = 0 E (H) σD(dt) = γ(e0) 6> 0 E

Lemma 1: Let be S : Γ(SM)→ Γ(SM) defined by S = −ıγ(e0)D + λ Id . Then:

(I) S is symmetric hyperbolic system for all λ ∈ R
(II) Its Cauchy problem is equivalent to the Cauchy problem for the Dirac operator

Dψ = f ∈ Γc (SM)

ψ|Σ0 = h ∈ Γc (SΣ0)

Mψ|∂M = 0.
⇐⇒


SΨ = f ∈ Γc (SM)

Ψ|Σ0 = h ∈ Γc (SΣ0)

MΨ|∂M = 0
(2)

(III) ∀ R ⊂M compact ∃ λ > 0 s. t. S is a symmetric positive hyperbolic system.

Idea of Proof of (II): Ψ = e−λtψ =⇒ h = e−λth, f = e−λtγ(e0)f and

SΨ = S(e−λtψ) = (−ıγ(e0)D + λId)(e−λtψ) = −ıe−λtγ(e0)Dψ = e−λtγ(e0)f .

MΨ|∂M = e−λtMψ|∂M = 0 if and only if Mψ|∂M = 0.
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Cauchy Problem: Existence and Uniqueness in a Time Strip

Energy Inequality in a Time Strip

- Time strip: T := t−1([0,T ]) where t : M→ R is the Cauchy time function

- Let λ ∈ R s.t. S = −ıγ(e0)D + λ is a symmetric positive hyperbolic system on

R∧ := J−(O) ∩ T

O

∂
M

supp Ψ|Σ0

R∧ T

Σ0

ΣT

Lemma 2: Let Ψ ∈ Γ(ST ) satify Ψ|Σ0 = 0 and MΨ|∂M = 0. Then Ψ satisfies the

Energy Inequality ‖Ψ‖L2(R∧) ≤ c‖SΨ‖L2(R∧) for constant c > 0 independent on Ψ.
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Cauchy Problem: Existence and Uniqueness in a Time Strip

Sketch of the proof of Lemma 2
(Now we use that S is a Symmetric Positive Hyperbolic system)

O

n∂
M

supp Ψ|Σ0 = 0

R∧ T

Σ0

ΣT

-(S) ⇒ Green identity: (Ψ |SΨ)R∧ − (S†Ψ |Ψ)R∧ = (Ψ | γ(e0)γ(n)Ψ)∂R∧

(Ψ | γ(e0)γ(n)Ψ)∂R∧︸ ︷︷ ︸
we want to estimate

−2(Ψ |SΨ)R∧ = −(Ψ |SΨ)R∧ − (Ψ |S†Ψ)R∧

= −(Ψ | (S + S†)Ψ)R∧
(P)

≤ −2c(Ψ |Ψ)R∧

- Boundary: ∂R∧ = O ∪
(

Σ0 ∩ J−(O)
)
∪ Y , and Y = (Y ∩ ∂M) t

(
Y \ (Y ∩ ∂M)

)
- (H)⇒ (Ψ | γ(e0)γ(n)Ψ)O > 0 and (Ψ | γ(e0)γ(n)Ψ)Y\(Y∩∂M) ≥ 0

- Hence: 2(Ψ |λΨ)R∧ ≤ 2(Ψ |SΨ)R∧
Hölder ineq.

=======⇒ ‖Ψ‖L2(R∧) ≤ λ−1‖SΨ‖L2(R∧)

Simone Murro (University of Freiburg) Cauchy problem for the Dirac operator Nancy, 2018 11 / 17



Cauchy Problem: Existence and Uniqueness in a Time Strip

Finite Propagation of Speed

Proposition 3: Any solution ψ to the Dirac Cauchy problem (1) propagates with at most

speed of light, i.e. its support on T is inside the region

V :=
(
J+
(
supp f ∩ T

)
∪ J+(supp h)

)
∩ T ,

supp fsupp fsupp f

supp h

p•
q•

V

R∧
Σ0

ΣT

Proof:

- Choose λ s.t. S is a symmetric positive hyperbolic system on R∧ = T ∩ J−(p)

- h|R∧∩Σ0 ≡ 0 and Lemma 2 ⇒ ‖Ψ‖L2(R∧) ≤ c‖SΨ‖L2(R∧) = 0 in R∧

- Hence, Ψ = 0 outside V.
- Lemma 1 ⇒ ψ propagates with at most speed of light
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Cauchy Problem: Existence and Uniqueness in a Time Strip

Uniqueness of the Solution

Proposition 4: Suppose there exist ψ, φ ∈ Γ(ST ) satisfying the same Cauchy

problem (1). Then ψ = φ.

supp fsupp fsupp f

supp (Ψ− Φ)|Σ0

V

R∧
Σ0

ΣT

Proof:

- Lemma 1 ⇒ Ψ,Φ are solutions for the same Cauchy problem (2).
S(Ψ− Φ) = 0
(Ψ− Φ)|Σ0 = 0
M(Ψ− Φ)|∂M = 0

- Finite Prop. Speed ⇒ supp Ψ and supp Φ are contained in R∧ for O := V ∩ ΣT .

- Energy Inequality ⇒ ‖Ψ− Φ‖L2(R∧) ≤ c‖SΨ‖L2(R∧) = 0

- Hence Ψ = Φ
Lemma 1

=====⇒ ψ = φ.
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Cauchy Problem: Existence and Uniqueness in a Time Strip

Weak and Strong Solutions

Definition: We call Ψ ∈ H :=
(
Γc (ST ), (. | .)T

)(. | .)T

(W) Weak Solution if it holds (Φ | f)T = (S†Φ |Ψ)T

for any Φ ∈ Γc (ST ) such that M†Φ|∂M = 0 and Φ|ΣT
≡ 0

(S) Strong Solution if ∃ {Ψk}k ⊂ C∞(Γ(SU)) s.t. MΨk = 0 on ∂M∩ U and

‖Ψk −Ψ‖L2(U)
k→∞−−−−→ 0 and ‖SΨk − f‖L2(U)

k→∞−−−−→ 0

where U ⊂M be a compact subset inM.

Lemma 5: A weak solution Ψ of the Cauchy problem (2) is locally a strong solution.

Comments on the Proof of Lemma 5:

- Far from the boundary, we can use a family of mollifier to conclude

- At the boundary, we choose Fermi coordinates (x0, x1, . . . , xn−1, z̃) such that

Ŝ := (γ(e0)γ(en))−1S = ∂z̃ +

n−1∑
j=0

Aj (x)∂x j + B(x)

- Family of mollifier in (x0, . . . , xn−1)-direction + Sobolev theory to conclude.
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Cauchy Problem: Existence and Uniqueness in a Time Strip

Existence of a Weak Solution

Theorem 6: There exists a unique weak solution Ψ ∈ H to the Cauchy problem (2)

with f ∈ Γcc (SM) and h ≡ 0, restricted to T .

supp fsupp fsupp fsupp f
V

R∧
R∨

Σ0

ΣTSketch of the Proof:

- Fin. Prog. Speed: (Φ | f)R∨ = (S†Φ |Ψ)R∨

- Energy Estimates: ‖Φ‖L2(R∨) ≤ c‖S†Φ‖L2(R∨)

- The kernel of the operator S† acting on domS† is trivial

domS† := {Φ ∈ Γc (ST ) | Φ|ΣT
= 0,M†Φ|∂M = 0}

- ` : S†(domS†)→ C given by `(Θ) = (Φ | f)R∨ where Φ satisfies S†Φ = Θ

- Energy Estimates ⇒ ` is bounded:

`(Θ) = (Φ | f)R∨ ≤ ‖f‖L2(R∨) ‖Φ‖L2(R∨) (Cauchy-Schwarz inequality)

≤ λ−1‖f‖L2(R∨)‖S
†
Φ‖L2(R∨) = λ−1‖f‖L2(R∨)‖Θ‖L2(R∨),

-Hence (Φ | f)R∨ = `(Θ)
Riesz
==
Thm.

(Θ |Ψ)R∨ = (S†Φ |Ψ)R∨ for all Φ ∈ domS†
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Cauchy Problem: Global Well-Posedness

Global Existence and Green Operators

Sketch of part (I) of the MAIN THEOREM:

- for any T ∈ [0,∞) exists a unique ψT ∈ Γ(STT ) of the Dirac Cauchy problem (1)

- For any T1,T2 ∈ [0,∞) with T2 > T1
unique

===⇒
sol.

ψT2 |TT1
= ψT1 .

- Hence, we can glue everything together to obtain a smooth solution for all T ≥ 0

- A similar arguments holds for negative time.

- Since h ∈ Γcc (SΣ0), f ∈ Γcc (SM)
Fin. Prop.

=====⇒
Speed

the solution is spacelike compact.

Proposition 7: The Dirac operator is Green hyperbolic. i.e. there exist linear maps

advanced/retarded Green operator G± : Γcc (SM)→ Γsc (SM) satisfying

(i) G± ◦ D f = D ◦ G±f = f for all f ∈ Γcc (SM);

(ii) supp (G±f ) ⊂ J±(supp f ) for all f ∈ Γcc (SM),

where J± denote the causal future (+) and past (-).
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Outlook

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

− well-posedness of the Cauchy problem for

X Dirac equation with local boundary condition (Nadine Große)

? Dirac equation with nonlocal boundary condition (Nicolò Drago & Nadine Große)

? Wave equation (with Nicolas Ginoux & Nadine Große)

? Maxwell equation (with Nicolas Ginoux & Nadine Große)

ADDITIONAL DIFFICULTIES:

− reduce wave equation and maxwell equation to 1st -order systems

Q: Are those systems symmetric, hyperbolic and positive?

− ∂M is characteristic for the 1st -order systems: det /n = 0 where n ⊥ ∂M
Q: weak solution=strong solution?

THANKS for your attention!
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