The Cauchy problem for the Dirac operator on a Lorentzian spin manifold

Simone Murro

Mathematical Institute University of Freiburg

Journees nancéiennes de géométries 2018

Nancy, 11th of December 2018

Joint project with Nadine Große

EINSTEIN 1915

Gravitation interaction \longleftrightarrow Lorentzian manifold (\mathcal{M}, g)

$$\mathsf{Ric} + \mathsf{g}\,(\mathsf{\Lambda} - \frac{1}{2}\mathsf{scal}) = \frac{8\pi\mathsf{G}}{\mathsf{c}^4}\mathsf{T}$$

GEOMETRY: Ric: Ricci (0,2)-tensor, scal: scalar curvature

MATTER: T: stress-egenergy (0,2)-tensor

PHYSICS: Λ: cosmological constant, G: gravitational constant, c: speed of light

(using the contracted) BIANCHI'S IDENTITY

$$\begin{split} & \operatorname{div}(\operatorname{Ric} - \tfrac{\operatorname{scal}}{2}\operatorname{\mathbf{g}}) = 0 & \longrightarrow & \operatorname{div}(\mathbf{T}) = 0 \\ & \mathbf{g}^{\alpha\gamma}\nabla_{\gamma}(\mathbf{R}_{\alpha\beta} - \tfrac{1}{2}\operatorname{\mathbf{g}}_{\alpha\beta}\mathbf{R}) = \mathbf{0} & \underbrace{\mathbf{g}^{\alpha\gamma}\nabla_{\gamma}\mathbf{T}_{\alpha\beta} = 0}_{\text{PDEs}} \end{split}$$

GOAL: Well-posedness of the Cauchy problem for the Dirac operator

Outline of the Talk

- Mathematical Preliminaries
 - Lorentzian Manifolds: the Spacetime's Geometry
 - Spin Geometry in a Nutshell
- The Cauchy Problem for the Dirac Operator
 - Existence and Uniqueness in a Time Strip
 - Global Well-Posedness
- Outlook
- ▶ Based on :

The well-posedness of the Cauchy problem for the Dirac operator on globally hyperbolic manifolds with timelike boundary, Nadine Große and S.M. (arXiv:1806.06544 [math.DG])

Lorentzian Manifolds: the Spacetime's Geometry

Given a Lorentzian manifold (\mathcal{M},g) we denote

- $v \in T_p\mathcal{M}$: spacelike if g(v,v) > 0, lightlike if g(v,v) = 0, timelike if g(v,v) < 0
- $\gamma:I \to \mathcal{M}$: spacelike if $g(\dot{\gamma},\dot{\gamma})>0$, lightlike if $g(\dot{\gamma},\dot{\gamma})=0$, timelike if $g(\dot{\gamma},\dot{\gamma})<0$
- $future/past\ J^\pm(p)=\{p\}\cup\{q\in\mathcal{M}: \text{future/past directed causal curve from } p \text{ to } q\}$

Definition: Let $\mathcal M$ of a connected, time-oriented, oriented Lorentzian manifold

- Cauchy hypersurface Σ : if each inextendible timelike curve $\gamma \cap \Sigma = \{pt\}$
- Globally hyperbolic: $\mathcal M$ strongly causal and $\forall p,q\in\mathcal M,J^+(p)\cap J^-(q)$ compact

Bernal-Sánchez's Theorem: Then the following are equivalent.

- (i) \mathcal{M} is globally hyperbolic;
- (ii) There exists a Cauchy hypersurface $\Sigma \subset \mathcal{M}$;
- (iii) \mathcal{M} isometric to $\mathbb{R} \times \Sigma$ with metric $-\beta^2 dt^2 + h_t$, where $\beta \in C^{\infty}(\mathcal{M}, (0, \infty))$
 - h_t is a Riemannian metric on Σ depending smoothly on $t \in \mathbb{R}$
 - all sets $\{t_0\} imes \Sigma$ are Cauchy hypersurfaces in ${\mathcal M}$

Example: Minkoski spacetime (\mathbb{R}^4, η) , Schwarzchild spacetime $(\mathbb{R}^2 \times \mathbb{S}^2, g_S)$

NOT Example: anti-de Sitter space ($\mathbb{S}^1 \times \mathbb{R}^3$, g_{adS}), Gödel universe (\mathbb{R}^4 , g_G)

Spin Geometry in a Nutshell

Definition: \mathcal{M} be a connected, time-oriented, oriented, n+1-dim Lorentzian manifold

- **Spinor bundle** SM: complex vector bundle with $N := 2^{\lfloor \frac{n+1}{2} \rfloor}$ -dimensional fibers endowed with **fiberwise** pairing given by the canonical scalar product on \mathbb{C}^N

$$\langle\cdot\,|\cdot\rangle\colon S_p\mathcal{M}\times S_p\mathcal{M}\to\mathbb{C}$$

and a **clifford multiplication**: fiber-preserving map $\gamma \colon T\mathcal{M} \to \operatorname{End}(S\mathcal{M})$

- Spin Manifold: manifold which admits a spinor bundle
- **Dirac operator**: D: $\Gamma(SM) \to \Gamma(SM)$ which in local coordinates this reads as

$$\mathsf{D} = \sum_{\mu=0}^n \imath \gamma(\mathsf{e}_\mu)
abla_{\mathsf{e}_\mu}$$

where $(e_{\mu})_{\mu=0,...,n}$ is a local orthonormal Lorentzian frame of $T\mathcal{M}$ and $\gamma(u)\gamma(v) + \gamma(v)\gamma(u) = -2g(u,v)$ for every $u,v \in T_p\mathcal{M}$ and $p \in \mathcal{M}$.

Remarks:

- (i) Topological obstruction to existence of a spinor bundle;
- (ii) Existence of spinor bundles on parallelizable manifolds;
- (iii) The Dirac Cauchy problem is well posed on glob. hyp. spin manifolds with $\partial \mathcal{M} = \emptyset$

Our Setting: Globally Hyperbolic Spin Manifolds with Nonempty Boundary

- Let $(\widetilde{\mathcal{M}},g)$ be a globally hyperbolic spin manifold of dimension $n+1\geq 3$
- Let $(\mathcal{N}, g|_{\mathcal{N}})$ be a submanifold of $(\widetilde{\mathcal{M}}, g)$ that is itself globally hyperbolic
- Let $\widetilde{\Sigma}$ be a smooth spacelike Cauchy surface of $\widetilde{\mathcal{M}}$
- Then, $\widehat{\Sigma}:=\widetilde{\Sigma}\cap\mathcal{N}$ is a spacelike Cauchy surface for \mathcal{N}
- We assume that ${\mathcal N}$ divides $\widetilde{{\mathcal M}}$ into two connected components
- The closure of one of them we denote by ${\mathcal M}$

Definition: We call $\mathcal M$ globally hyperbolic manifold with timelike boundary

- On $\widetilde{\mathcal{M}}$ we choose a Cauchy time function $t\colon \widetilde{\mathcal{M}} \to \mathbb{R}$
- Then $\{t^{-1}(s)\}_{s\in\mathbb{R}}$ gives a foliation by Cauchy surfaces
- We set $\Sigma_s:=t^{-1}(s)\cap \mathcal{M}$.
- For n+1=2, \mathcal{M} is homeomorphic to $\mathbb{R}\times[a,\infty)$ or $\mathbb{R}\times[a,b]$)

MAIN THEOREM

- (\mathcal{M}, g) be a globally hyperbolic spin manifold with timelike boundary $\partial \mathcal{M}$;
- $SM \to M$ be the spinor bundle and $D : \Gamma(SM) \to \Gamma(SM)$ be Dirac operator;
- linear, non-invertible M: $\Gamma(S\partial \mathcal{M}) \to \Gamma(S\partial \mathcal{M})$ with constant kernel dimension s.t.

$$\label{eq:multiple} \mathsf{M}\psi|_{\partial\mathcal{M}} = 0 \ \ \text{and} \ \ \mathsf{M}^\dagger\psi|_{\partial\mathcal{M}} = 0 \quad \Longrightarrow \quad \langle\psi\,|\,\gamma(e_0)\gamma(n)\psi\rangle_q = 0\,.$$

Then the Cauchy problem for the Dirac operator is well-posed:

(I) $\forall f \in \Gamma_{cc}(SM)$ and $\forall h \in \Gamma_{cc}(S\Sigma_0)$ exists a unique $\psi \in \Gamma_{sc}(SM)$ such that

$$\begin{cases} \mathsf{D}\psi = f \\ \psi|_{\Sigma_{\mathbf{0}}} = h \\ \mathsf{M}\psi|_{\partial\mathcal{M}} = 0 \end{cases} \tag{1}$$

(II) moreover $\Gamma_{cc}(SM) \times \Gamma_{cc}(S\Sigma_0) \ni (f,h) \mapsto \psi \in \Gamma_{sc}(SM)$ is continuous;

Example: MIT boundary condition $M = (\gamma(n) - i)$

($\gamma(n)$ denotes Clifford multiplication for n , the outward unit normal on $\partial \mathcal{M}$)

Remark: The Cauchy problem (1) is still well-posed for $(f, h) \in \Gamma_c(SM) \times \Gamma_c(S\Sigma_0)$

Reformulation of the Cauchy Problem I

Symmetric Positive Hyperbolic Systems

- $E o \mathcal{M}$ be a complex vector bundle with finite rank N and fiberwise metric $\langle\cdot\,|\,\cdot
 angle$
- $\mathfrak{L}: \Gamma(E) \to \Gamma(E)$ with formal L^2 -adjoint \mathfrak{L}^{\dagger}

$$(\cdot | \cdot)_{\mathcal{M}} := \int_{\mathcal{M}} \langle \cdot | \cdot \rangle \mathsf{Vol}_{\mathcal{M}},$$

Definition: a 1^{st} order $\mathfrak L$ is called **symmetric positive hyperbolic system** if

- (S) $\sigma_{\mathfrak{L}}(\xi) \colon E_p \to E_p$ is Hermitian with respect to $\langle \cdot | \cdot \rangle$, $\forall \xi \in T_p^* \mathcal{M}$ and $\forall p \in \mathcal{M}$.
- (P) $\langle (\mathfrak{L} + \mathfrak{L}^{\dagger}) \cdot | \cdot \rangle$ on E_p is positive definite
- (H) $\langle \sigma_{\mathfrak{L}}(\tau) \cdot | \cdot \rangle$ is positive definite on E_p , for any future-directed timelike $\tau \in \mathcal{T}_p^* \mathcal{M}$

In local coordinates (t, x^1, \dots, x^n) on $\mathcal M$ and a local trivialization of E:

$$\mathfrak{L} := A_0(p)\partial_t + \sum_{j=i}^n A_j(p)\partial_{x^j} + B(p) \qquad A_0, A_j, B \in C^{\infty}(\mathcal{M}, Mat(N \times N))$$

(S)
$$A_0 = A_0^{\dagger}$$
, $A_j = A_j^{\dagger}$ (P) $\kappa := \mathfrak{L} + \mathfrak{L}^{\dagger} = B - \partial_t(\sqrt{g})A_0$) $-\sum_{j=1}^n \partial_{x^j}(\sqrt{g}A_j) > 0$
(H) $\sigma_{\mathfrak{L}}(\tau) = A_0 + \sum_{j=1}^{N-1} \alpha_j A_j > 0$ for any $\tau = dt + \sum_j \alpha_j dx^j$

Reformulation of the Cauchy Problem II

NOT Example: $\mathscr{M}^4:=\mathbb{R}^3 imes [0,\infty)$ endowed with the element line

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2.$$

For the Dirac operator $D = i\gamma(e_0)\partial_t + i\gamma(e_1)\partial_x + i\gamma(e_2)\partial_y + i\gamma(e_3)\partial_z$ we have

(S)
$$\gamma(e_j)^{\dagger} = -\gamma(e_j)$$
 (P) $\kappa = 0$ (H) $\sigma_{D}(dt) = \gamma(e_0) \geqslant 0$ (2)

Lemma 1: Let be $\mathfrak{S}: \Gamma(\mathcal{SM}) \to \Gamma(\mathcal{SM})$ defined by $\mathfrak{S} = -\imath \gamma(e_0)\mathsf{D} + \lambda \,\mathsf{Id}$. Then:

- (I) \mathfrak{S} is symmetric hyperbolic system for all $\lambda \in \mathbb{R}$
- (II) Its Cauchy problem is equivalent to the Cauchy problem for the Dirac operator

$$\begin{cases}
D\psi = f \in \Gamma_{c}(S\mathcal{M}) \\
\psi|_{\Sigma_{\mathbf{0}}} = h \in \Gamma_{c}(S\Sigma_{\mathbf{0}}) & \iff \\
M\psi|_{\partial\mathcal{M}} = 0.
\end{cases}
\begin{cases}
\mathfrak{S}\Psi = \mathfrak{f} \in \Gamma_{c}(S\mathcal{M}) \\
\Psi|_{\Sigma_{\mathbf{0}}} = \mathfrak{h} \in \Gamma_{c}(S\Sigma_{\mathbf{0}}) \\
M\Psi|_{\partial\mathcal{M}} = 0
\end{cases}$$
(2)

(III) $\forall \ \mathcal{R} \subset \mathcal{M} \text{ compact } \exists \ \lambda > 0 \text{ s. t. } \mathfrak{S} \text{ is a symmetric positive hyperbolic system.}$

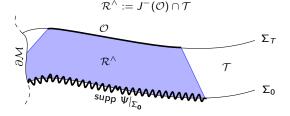
Idea of Proof of (II):
$$\Psi = e^{-\lambda t}\psi \Longrightarrow \mathfrak{h} = e^{-\lambda t}h$$
, $\mathfrak{f} = e^{-\lambda t}\gamma(e_0)f$ and

$$\mathfrak{S}\Psi=\mathfrak{S}(e^{-\lambda t}\psi)=(-\imath\gamma(e_0)D+\lambda Id)(e^{-\lambda t}\psi)=-\imath e^{-\lambda t}\gamma(e_0)D\psi=e^{-\lambda t}\gamma(e_0)f.$$

$$M\Psi|_{\partial M} = e^{-\lambda t} M\psi|_{\partial M} = 0$$
 if and only if $M\psi|_{\partial M} = 0$.

Energy Inequality in a Time Strip

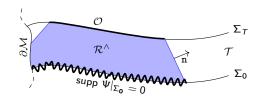
- Time strip: $\mathcal{T}:=t^{-1}([0,T])$ where $t\colon \mathcal{M} \to \mathbb{R}$ is the Cauchy time function
- Let $\lambda \in \mathbb{R}$ s.t. $\mathfrak{S} = -\imath \gamma(e_0)\mathsf{D} + \lambda$ is a symmetric positive hyperbolic system on



Lemma 2: Let $\Psi \in \Gamma(\mathcal{ST})$ satisfy $\Psi|_{\Sigma_0} = 0$ and $M\Psi|_{\partial\mathcal{M}} = 0$. Then Ψ satisfies the **Energy Inequality** $\|\Psi\|_{L^2(\mathcal{R}^{\wedge})} \le c\|\mathfrak{S}\Psi\|_{L^2(\mathcal{R}^{\wedge})}$ for constant c>0 independent on Ψ .

Sketch of the proof of Lemma 2

(Now we use that $\mathfrak S$ is a Symmetric Positive Hyperbolic system)



$$-(S) \Rightarrow$$
 Green identity: (

$$(\Psi \,|\, \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} - (\mathfrak{S}^{\dagger}\Psi \,|\, \Psi)_{\mathcal{R}^{\wedge}} = (\Psi \,|\, \gamma(e_0)\gamma(\mathtt{n})\Psi)_{\partial\mathcal{R}^{\wedge}}$$

$$\underbrace{ (\Psi \,|\, \gamma(e_0)\gamma(n)\Psi)_{\partial\mathcal{R}^{\wedge}}}_{\text{we want to estimate}} -2(\Psi \,|\, \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} = -(\Psi \,|\, \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} - (\Psi \,|\, \mathfrak{S}^{\dagger}\Psi)_{\mathcal{R}^{\wedge}} \\ = -(\Psi \,|\, (\mathfrak{S}+\mathfrak{S}^{\dagger})\Psi)_{\mathcal{R}^{\wedge}} \overset{(P)}{\leq} -2c(\Psi \,|\, \Psi)_{\mathcal{R}^{\wedge}}$$

- Boundary:
$$\partial \mathcal{R}^{\wedge} = \mathcal{O} \cup \left(\Sigma_0 \cap J^-(\mathcal{O})\right) \cup Y$$
, and $Y = (Y \cap \partial \mathcal{M}) \sqcup \left(Y \setminus (Y \cap \partial \mathcal{M})\right)$

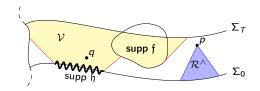
- **(H)**
$$\Rightarrow$$
 $(\Psi \mid \gamma(e_0)\gamma(n)\Psi)_{\mathcal{O}} > 0$ and $(\Psi \mid \gamma(e_0)\gamma(n)\Psi)_{\mathcal{Y}\setminus(\mathcal{Y}\cap\partial\mathcal{M})} \geq 0$

- Hence:
$$2(\Psi \mid \lambda \Psi)_{\mathcal{R}^{\wedge}} \leq 2(\Psi \mid \mathfrak{S}\Psi)_{\mathcal{R}^{\wedge}} \xrightarrow{\mathsf{H\"older ineq}} \|\Psi\|_{L^{2}(\mathcal{R}^{\wedge})} \leq \lambda^{-1} \|\mathfrak{S}\Psi\|_{L^{2}(\mathcal{R}^{\wedge})}$$

Finite Propagation of Speed

Proposition 3: Any solution ψ to the Dirac Cauchy problem (1) propagates with at most speed of light, i.e. its support on $\mathcal T$ is inside the region

$$\mathcal{V} := \left(J^+ig(\mathsf{supp}\ f\cap\mathcal{T}ig)\cup J^+(\mathsf{supp}\ h)
ight)\cap\mathcal{T},$$

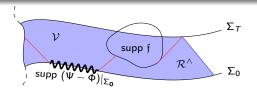


Proof:

- Choose λ s.t. $\mathfrak S$ is a symmetric positive hyperbolic system on $\mathcal R^\wedge=\mathcal T\cap J^-(p)$
- $\text{-} \ \mathfrak{h}|_{\mathcal{R}^{\wedge} \cap \Sigma_{\boldsymbol{0}}} \equiv 0 \ \text{and Lemma} \ 2 \Rightarrow \|\Psi\|_{L^{\boldsymbol{2}}(\mathcal{R}^{\wedge})} \leq c \|\mathfrak{S}\Psi\|_{L^{\boldsymbol{2}}(\mathcal{R}^{\wedge})} = 0 \ \text{in} \ \mathcal{R}^{\wedge}$
- Hence, $\Psi = 0$ outside \mathcal{V} .
- Lemma $1 \Rightarrow \psi$ propagates with at most speed of light

Uniqueness of the Solution

Proposition 4: Suppose there exist $\psi, \phi \in \Gamma(ST)$ satisfying the same Cauchy problem (1). Then $\psi = \phi$.



Proof:

- Lemma $1 \Rightarrow \Psi, \Phi$ are solutions for the same Cauchy problem (2).

$$\begin{cases} \mathfrak{S}(\Psi - \Phi) = 0 \\ (\Psi - \Phi)|_{\Sigma_{\boldsymbol{0}}} = 0 \\ M(\Psi - \Phi)|_{\partial \mathcal{M}} = 0 \end{cases}$$

- Finite Prop. Speed \Rightarrow supp Ψ and supp Φ are contained in \mathcal{R}^{\wedge} for $\mathcal{O} := \mathcal{V} \cap \Sigma_{\mathcal{T}}$.
- Energy Inequality $\Rightarrow \|\Psi \Phi\|_{L^2(\mathcal{R}^{\wedge})} \leq c \|\mathfrak{S}\Psi\|_{L^2(\mathcal{R}^{\wedge})} = 0$
- Hence $\Psi = \Phi \xrightarrow{\mathsf{Lemma} \ 1} \psi = \phi$.

Weak and Strong Solutions

Definition: We call $\Psi \in \mathcal{H} := \overline{\left(\Gamma_c(S\mathcal{T}), (.\,|\,.)_{\mathcal{T}}\right)}^{(.\,|\,.)_{\mathcal{T}}}$

- (W) Weak Solution if it holds $(\Phi \mid \mathfrak{f})_{\mathcal{T}} = (\mathfrak{S}^{\dagger} \Phi \mid \Psi)_{\mathcal{T}}$ for any $\Phi \in \Gamma_c(\mathcal{ST})$ such that $M^{\dagger} \Phi \mid_{\partial \mathcal{M}} = 0$ and $\Phi \mid_{\Sigma_{\mathcal{T}}} \equiv 0$
- (S) Strong Solution if $\exists \{\Psi_k\}_k \subset C^{\infty}(\Gamma(SU))$ s.t. $M\Psi_k = 0$ on $\partial \mathcal{M} \cap U$ and

$$\|\Psi_k - \Psi\|_{L^2(U)} \xrightarrow{k \to \infty} 0 \quad \text{ and } \quad \|\mathfrak{S}\Psi_k - \mathfrak{f}\|_{L^2(U)} \xrightarrow{k \to \infty} 0$$

where $U \subset \mathcal{M}$ be a compact subset in \mathcal{M} .

Lemma 5: A weak solution Ψ of the Cauchy problem (2) is locally a strong solution.

Comments on the Proof of Lemma 5:

- Far from the boundary, we can use a family of mollifier to conclude
- At the boundary, we choose Fermi coordinates $(x^0, x^1, \dots, x^{n-1}, \widetilde{z})$ such that

$$\widehat{\mathfrak{S}} := (\gamma(e_0)\gamma(e_n))^{-1}\mathfrak{S} = \partial_{\widetilde{z}} + \sum_{j=0}^{n-1} A_j(x)\partial_{x^j} + B(x)$$

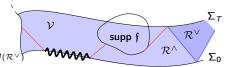
- Family of mollifier in (x^0, \dots, x^{n-1}) -direction + Sobolev theory to conclude.

Existence of a Weak Solution

Theorem 6: There exists a unique weak solution $\Psi \in \mathcal{H}$ to the Cauchy problem (2) with $\mathfrak{f} \in \Gamma_{cc}(S\mathcal{M})$ and $\mathfrak{h} \equiv 0$, restricted to \mathcal{T} .

Sketch of the Proof:

- Fin. Prog. Speed: $(\Phi \,|\, \mathfrak{f})_{\mathcal{R}^{\vee}} = (\mathfrak{S}^{\dagger}\Phi \,|\, \Psi)_{\mathcal{R}^{\vee}}$
- Energy Estimates: $\|\Phi\|_{L^2(\mathcal{R}^\vee)} \le c \|\mathfrak{S}^\dagger \Phi\|_{L^2(\mathcal{R}^\vee)}$



- The kernel of the operator \mathfrak{S}^{\dagger} acting on dom \mathfrak{S}^{\dagger} is trivial

$$\mathsf{dom}\,\mathfrak{S}^\dagger:=\{\Phi\in\Gamma_c(\mathcal{ST})\mid\Phi|_{\Sigma_\mathcal{T}}=0,\mathsf{M}^\dagger\Phi|_{\partial\mathcal{M}}=0\}$$

- $\ell \colon \mathfrak{S}^{\dagger}(\mathsf{dom}\,\mathfrak{S}^{\dagger}) \to \mathbb{C}$ given by $\ell(\Theta) = (\Phi \mid \mathfrak{f})_{\mathcal{R}^{\vee}}$ where Φ satisfies $\mathfrak{S}^{\dagger}\Phi = \Theta$
- Energy Estimates $\Rightarrow \ell$ is bounded:

$$\begin{split} \ell(\Theta) &= (\Phi \mid \mathfrak{f})_{\mathcal{R}^{\vee}} \; \leq \|\mathfrak{f}\|_{L^{2}(\mathcal{R}^{\vee})} \, \|\Phi\|_{L^{2}(\mathcal{R}^{\vee})} \qquad \text{(Cauchy-Schwarz inequality)} \\ &\leq \lambda^{-1} \|\mathfrak{f}\|_{L^{2}(\mathcal{R}^{\vee})} \|\mathfrak{S}^{\dagger}\Phi\|_{L^{2}(\mathcal{R}^{\vee})} = \lambda^{-1} \|\mathfrak{f}\|_{L^{2}(\mathcal{R}^{\vee})} \|\Theta\|_{L^{2}(\mathcal{R}^{\vee})}, \end{split}$$

-Hence $(\Phi \,|\, \mathfrak{f})_{\mathcal{R}^{\vee}} = \ell(\Theta) \, \frac{\textit{Riesz}}{\textit{Thm.}} \, (\Theta \,|\, \Psi)_{\mathcal{R}^{\vee}} = (\mathfrak{S}^{\dagger}\Phi \,|\, \Psi)_{\mathcal{R}^{\vee}} \, \, \, \text{for all } \, \Phi \in \mathsf{dom}\mathfrak{S}^{\dagger}$

Global Existence and Green Operators

Sketch of part (I) of the MAIN THEOREM:

- for any $T \in [0,\infty)$ exists a unique $\psi_T \in \Gamma(\mathcal{ST}_T)$ of the Dirac Cauchy problem (1)
- For any $T_1, T_2 \in [0, \infty)$ with $T_2 > T_1 \xrightarrow{unique}_{sol.} \psi_{T_2}|_{\mathcal{T}_{T_1}} = \psi_{T_1}$.
- Hence, we can glue everything together to obtain a smooth solution for all $\mathcal{T} \geq 0$
- A similar arguments holds for negative time.
- Since $h \in \Gamma_{cc}(S\Sigma_0)$, $f \in \Gamma_{cc}(S\mathcal{M}) \xrightarrow{Fin. Prop.}$ the solution is spacelike compact.

Proposition 7: The Dirac operator is Green hyperbolic. i.e. there exist linear maps advanced/retarded Green operator $G^{\pm}: \Gamma_{cc}(\mathcal{SM}) \to \Gamma_{sc}(\mathcal{SM})$ satisfying

- (i) $G^{\pm} \circ Df = D \circ G^{\pm}f = f$ for all $f \in \Gamma_{cc}(SM)$;
- (ii) supp $(G^{\pm}f) \subset J^{\pm}(\text{supp }f)$ for all $f \in \Gamma_{cc}(S\mathcal{M})$,

where J^{\pm} denote the causal future (+) and past (-).

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

- well-posedness of the Cauchy problem for
 - √ Dirac equation with local boundary condition (Nadine Große)
 - ? Dirac equation with nonlocal boundary condition (Nicolò Drago & Nadine Große)
 - ? Wave equation (with Nicolas Ginoux & Nadine Große)
 - ? Maxwell equation (with Nicolas Ginoux & Nadine Große)

ADDITIONAL DIFFICULTIES:

- reduce wave equation and maxwell equation to 1^{st} -order systems
 - Q: Are those systems symmetric, hyperbolic and positive?
- $-\partial \mathcal{M}$ is characteristic for the 1st-order systems: det $\not h = 0$ where $n \perp \partial \mathcal{M}$
 - Q: weak solution=strong solution?