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Preliminaries

Globally hyperbolic manifolds with timelike boundary

- M is connected, time-oriented, oriented smooth manifold with boundary ∂M

- g and g |∂M are Lorentzian metric =⇒ M is Lorentzian with timelike ∂M

Few definitions:

- Temporal function: t ∈ C∞(M,R) strictly increasing on future directed causal curve and
∇t is timelike everywhere and past-pointing

- Cauchy hypersurface Σ: if each inextendible timelike curve γ ∩ Σ = {pt}

- Globally hyperbolic: M strongly causal and ∀p, q ∈ M,J+(p) ∩ J−(q) compact

Bernal and Sánchez (2005) – Aké, Flores and Sánchez (2019):

M is globally hyperbolic (with timelike boundary)

m

Exists a Cauchy temporal function (t−1(s) := Σs is a Cauchy) and ∇t ∈ T∂M

⇓

M isometric to R× Σ with metric −β2dt2 + ht , where β ∈ C∞(M, (0,∞))

Example: Minkoski spacetime (R4, η), Schwarzchild spacetime (R2 × S2, gS )

NOT Example: anti-de Sitter space (S1 × R3, gadS ), Gödel universe (R4, gG )
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Preliminaries

Symmetric hyperbolic systems

- E → M be a K-vector bundle with finite rank N and sesquilinear fiber metric ≺ · | · �

Definition: a 1st order S is called symmetric hyperbolic system if

(S) σS (ξ) : Ep → Ep is Hermitian with respect to ≺ · | · �, ∀ξ ∈ T∗p M and ∀p ∈ M.

(H) ≺ σS (τ) · | · � is positive definite on Ep , for any future-directed timelike τ ∈ T∗p M

Furthermore S is of constant characteristic if dim ker σS (n[) is constant, where n ⊥ ∂M.

Example: E = CN × Rn → (Rn, η) with ≺ | �= 〈 | 〉CN

S := A0(p)∂t +
n∑
j=i

Aj (p)∂xj + B(p)

(S) A0 = A†0 , Aj = A†j (H) σS (dt +
∑
j

αjdxj ) = A0 +
∑
j=1

αjAj > 0 .

Lemma: If ≺ · | · � is indefinite and S is a symmetric hyperbolic system, then:

(I) 〈· | ·〉 :=≺ σS (dt) · | · � is positive Hermitian metric;

(II) S = −σS (dt)−1S . is symmetric hyperbolic system

(III) Cauchy problem for S is equivalent to the Cauchy problem for S.
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Preliminaries

Example I: The classical Dirac operator

- M = (M, g) is a globally hyperbolic spin manifold with timelike boundary;

- SM is a spinor bundle: C-vector bundle with N-dim. fibers with indefinite sesquilinear metric

≺ · | · � : SpM × SpM → C

and a Clifford multiplication, i.e. fiber-preserving map γ : TM → End(SM)

Dirac operator: D := γ ◦ ∇S : Γ(SM)→ Γ(SM) which in local coordinates reads

D =
n∑
µ=0

εµγ(eµ)∇S
eµ

- (eµ)µ=0,...,n is a local orthonormal Lorentzian frame of TM and εµ := g(eµ, eµ)

- γ(u)γ(v) + γ(v)γ(u) = −2g(u, v) for every u, v ∈ TpM and p ∈ M.

Remarks:

(i) Topological obstruction to existence of a spinor bundle;

(ii) Existence of spinor bundles on parallelizable manifolds;

(iii) D is nowhere characteristic.
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Preliminaries

Example II: The geometric wave operator

-M is a globally hyperbolic with timelike boundary and g = −β2dt2 + ht ;

- V be an Hermitian vector bundle of finite rank;

- P is a normally hyperbolic operator, i.e. P = ∇∗∇ + c and principal symbol σP defined by

σP (ξ) = −g(ξ, ξ) · IdV , for every ξ ∈ T∗M.

A norm. hyp. op. P can be reduced to S : Γ(E)→ Γ(E) defined by

S := (A0∇∂t + AΣ∇Σ + C)

Ψ :=

∇∂t u∇Σu
u

 A0 :=

 1
β2 0 0
0 1 0
0 0 1

 AΣ =

 0 −trht 0
−1 0 0
0 0 0

 C =

(
suitable

)
.

Remarks:

(i) The Cauchy problem for P can be made equivalent to the Cauchy problem for S;

(ii) S is of constant characteristic,

σS (n[) =

 0 −n[y 0
−n[⊗ 0 0

0 0 0

 ,
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Boundary conditions

Admissible boundary conditions

Definition: A boundary space Badm for S is called admissible if

- The quadratic form Ψ 7→≺ σS (n[)Ψ |Ψ � is positive semi-definite on Badm;

- rank Badm = # pointwise non-negative eigenvalues of σS (n[) counting multiplicity.

The adjoint boundary space is defined by B†adm :=
(
σS(n[)(Badm)

)⊥
, i.e.

{Φ ∈ Γ(E |∂M ) | for any Ψ ∈ Badm it holds ≺ σS(n[)Ψ |Φ �= 0} .

Examples for classical Dirac operators:

Lorentzian MIT boundary space is the range of πLor := 1
2 (Id± ıγ(n))

≺ σD(n[)πMITψ |πMITψ �=≺ γ(n)πMITψ |πMITψ �= ı ≺ πMITψ |πMITψ �

Riemannian MIT boundary space is the range of πRiem := 1
2

(
Id− 1

β γ(n)γ(∂t)
)

≺ σD(n[)πRiemψ |πRiemψ �=≺ γ(n)πRiemψ |πRiemψ �=
1
β
≺ γ(∂t)πRiemψ |πRiemψ �≥ 0
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Boundary conditions

Admissible boundary conditions

Definition: A boundary space Badm for S is called admissible if

- The quadratic form Ψ 7→≺ σS (n[)Ψ |Ψ � is positive semi-definite on B;

- rank Badm = # pointwise non-negative eigenvalues of σS (n[) counting multiplicity.

The adjoint boundary space is defined by B†adm :=
(
σS(n[)(Badm)

)⊥
, i.e.

{Φ ∈ Γ(E |∂M ) | for any Ψ ∈ Badm it holds ≺ σS(n[)Ψ |Φ �= 0} .

Examples for geometric wave operator:

Neumann like-boundary condition: ∇Σ
n u = 0 =⇒ BN.

adm = ker

 0 ny 0
0 0 0
0 0 0


Transparent boundary condition: ∇Σ

n u = −b∇∂t u =⇒ BT. = ker

 b ny 0
0 0 0
0 0 0


NOT example for geometric wave operator:

Robin boundary condition: ∇Σ
n u = bu (b 6= 0) ⇒ BR.

adm = ker

 0 ny −b
0 0 0
0 0 0


(the quadratic form is not positive semi-definite)
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Boundary conditions

Self-adjoint elliptic boundary conditions

- M is a globally hyperbolic spin with timelike boundary and ∂Σ is compact;

- Dirac operator on spinor bundle SM reads as D = −γ(dt)∇∂t + DΣ

- Dirac Hamiltonian H := ıγ(dt)−1DΣ ( DΨ = 0 ⇐⇒ ı∇∂t Ψ = HΨ)

- adapted operator A : Γ(SM|∂M )→ Γ(SM|∂M ) formally self-adjoint s. t. ∀p ∈ ∂Σt ∀ξ ∈ T∗p ∂Σ

σA(ξ) := σH(t)(ν[t )−1 ◦ σH(t)(ξ) σH(t)(ν[t ) ◦ A = −A ◦ σH(t)(ν[t ) ,

- Sobolev-like spaces Ȟ(A(t) := H
1
2
(−∞,a)

(A(t))⊕H
− 1

2
[a,∞)

(A(t))

Hs
I (A(t)) :=

{∑
j

αjϕj (t) ∈ L2(SM|∂Σt )
∣∣∣ ∑

j|λj∈I

|αj |2(1 + λ
2
j (t))s < +∞

}
, s ∈ R ,

Definition: A boundary space Bell for D is called self-adjoint elliptic if

(B) Bell (t) ⊂ Ȟ(A(t)) is closed;

(E) Ψ ∈ Hk
loc (SM|Σt )⇐⇒ Hell (t)Ψ ∈ Hk+1

loc (SM|Σt ) ,

(SA) Bell (t) = B†ell (t) := {Φ ∈ Ȟ(A(t) | for any Ψ ∈ Bell it holds ≺ σH(t)(n[)Ψ |Φ �= 0}

Examples:

APS boundary conditions BAPS := H
1
2
(−∞,0)

(A(t)) (self-adjoint ⇐⇒ ker A(t) = {0}).

Simone Murro (University of Trento) Hyperbolic Cauchy problems Regensburg, 2020 9 / 16



Cauchy problem

TAKE HOME MESSAGES

Theorem [Ginoux-M.]

- M = R× Σ globally hyperbolic with timelike boundary

There exists a unique strong solution to the Cauchy problem for a symmetric hyperbolic system
SΨ = f

Ψ|E|Σ0
= h

Ψ ∈ Badm

If (f, h) ∈ Γ(E)× Γ(E |Σ0 ) satisfy compatibility conditions

(i) S is nowhere characteristic =⇒ the solution is smooth;

(ii) S is of constant characteristic =⇒ the solution is smooth in tangential direction.

Theorem [Drago-Große-M.]

- M = R× Σ globally hyperbolic with timelike boundary with ∂Σ compact

There exists a unique smooth solution Ψ to the Cauchy problem for the Dirac operator
DΨ = f

Ψ|SM|Σ0
= h

Ψ ∈ Bell

where (f, h) ∈ Γ̌c (SM)× Γ̌c (SM|Σ0 ) ⊂ Γ(SM)× Γ(SM|Σ0 ).
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Energy estimates

Energy estimates

Theorem (Energy estimates)

- M = R× Σ globally hyperbolic with timelike boundary (and ∂Σ compact for elliptic B.C.)

- S is symmetric hyperbolic with Badm while D is Dirac operator with Bell

Then for each t0 ∈ t(M) there exists constants C > 0 such that for all t1 ≥ t0 it holds
ˆ

Σt1

|Ψ|2dµt1 ≤ CeC(t1−t0)
ˆ t1

t0

ˆ
Σs

|DΨ|2dµsds + eC(t1−t0)
ˆ

Σt0

|Ψ|2dµt0 ∀Ψ ∈ Bell

ˆ
Σ
p
t1

|Ψ|2dµt1 ≤ CeC(t1−t0)
ˆ t1

t0

ˆ
Σ
p
s

|SΨ|2dµsds + eC(t1−t0)
ˆ

Σ
t
p
0

|Ψ|2dµt0 ∀Ψ ∈ Badm

where t : M → R be a Cauchy temporal function and Σp
s := J−(p) ∩ Σs

Corollary (uniqueness)

If there exists a solution to the Cauchy problem with admissible/elliptic B.C., then it is unique

Proof: If S(Ψ− Φ) = 0, Ψ,Φ ∈ Badm/ell and Ψ|Σ0 = Φ|Σ0
Energy estimates−−−−−−−−−−→ Ψ− Φ = 0

Corollary (finite speed of propagation with Badm)

supp Ψ ⊂ V := J(supp f
)
∪ J(supp h)

Proof: If p 6∈ V then f|M\V = 0 and h|M\V = 0
Energy estimates−−−−−−−−−−→ Ψ|M\V = 0

Simone Murro (University of Trento) Hyperbolic Cauchy problems Regensburg, 2020 11 / 16



Energy estimates

Energy estimates (admissible boundary conditions)

K

Σp
t1

Σp
t0

∂
M

Σt0

Σt1

Sketch of the proof:

-n-differential form:

ω :=
∑n

j=0 <e
(
≺ σS(b[j )Ψ |Ψ �

)
bjyvolM

- Stokes’ theorem for manifold with Lipschitz boundary yieldsˆ
K

dω =

ˆ
∂K

ω =

ˆ
Σ
p
t1

ω −
ˆ

Σ
p
t0

ω +

ˆ
red
ω +

ˆ
blue

ω

- Hyperbolicity of S =⇒
´
blue ω ≥ 0 while Ψ ∈ Badm =⇒

´
red ω ≥ 0

ˆ
Σ
p
t1

|Ψ|2dµ1 −
ˆ

Σ
p
t0

|Ψ|2dµ0 ≤
ˆ
K

dω ≤ C

ˆ t1

t0

ˆ
Σ
p
s

(|Ψ|2 + |SΨ|2)dµsds

- By setting h(s) :=

ˆ
Σ
p
s

|Ψ|2dµs , α(t1) := C

ˆ t1

t0

ˆ
Σ
p
s

(|Ψ|2 + |SΨ|2)dµsds +

ˆ
Σ
p
0

|Ψ|2dµ0

and using Grönwall, we obtain: h(t1) ≤ α(t1) + C

ˆ t1

t0
h(s)ds ≤ α(t1)eC(t1−t0)
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Existence and Uniqueness of smooth solutions

Weak and Strong Solutions in a time strip MT := t−1(t1, t0)

Definition: We call Ψ ∈H :=
(

Γc (E |MT
), (. | .)MT

)(. | .)MT

(W) Weak Solution if it holds (Φ | f)MT
= (S†Φ |Ψ)MT

for any Φ ∈ Γc (E |MT
) such that Φ ∈ B†

adm/ell
and Φ|Σt1

= 0 = Φ|Σt0

(S) Strong Solution if ∃ {Ψk}k , Ψk ∈ Γ(E |MT
) s.t. Ψk ∈ Badm/ell on ∂M and

‖Ψk − Ψ‖L2(MT )
k→∞−−−−→ 0 and ‖SΨk − f‖L2(MT )

k→∞−−−−→ 0

Theorem (weak=strong with admissible boundary conditions Badm)

- M = R× Σ globally hyperbolic with timelike boundary

- S is symmetric hyperbolic with admissible boundary conditions Badm

Any weak solution is a strong solution. Moreover, if (f, h) satisfy compatibility conditions

(i) S is nowhere characteristic =⇒ the solution is smooth;

(ii) S is of constant characteristic =⇒ the solution is smooth in tangential direction;

Comments on the Proof

- Admissible boundary conditions are local, so we can localise

- In Fermi coordinates, we can use the local theory [Phillips-Lax,Rauch,Massey-Rauch].
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Existence and Uniqueness of smooth solutions

Existence of a Weak Solution

Theorem (existence weak solutions)

- M = R× Σ globally hyperbolic with timelike boundary (and ∂Σ compact for elliptic B.C.)

- S is symmetric hyperbolic with Badm or is Dirac operator with Bell

There exists a weak solution to the Cauchy problem.

Sketch of the proof:

- Energy Estimates: ‖Φ‖L2(MT ) ≤ c‖S†Φ‖L2(MT )

- The kernel of the operator S† acting on domS† is trivial

domS† := {Φ ∈ Γc (EMT
) | Φ|Σt1

= 0,Φ|Σt0
= 0,Φ ∈ Badm/ell}

- ` : S†(domS†)→ C given by `(Θ) = (Φ | f)MT
where Φ satisfies S†Φ = Θ

- Energy Estimates ⇒ ` is bounded:

`(Θ) = (Φ | f)MT
≤ ‖f‖L2(MT ) ‖Φ‖L2(MT ) (Cauchy-Schwarz inequality)

≤ λ−1‖f‖L2(MT )‖S
†Φ‖L2(MT ) = λ

−1‖f‖L2(MT )‖Θ‖L2(MT ),

-Hence (Φ | f)MT
= `(Θ)

Riesz
==
Thm.

(Θ |Ψ)MT
= (S†Φ |Ψ)MT

for all Φ ∈ domS†
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Existence and Uniqueness of smooth solutions

Existence of smooth solutions with elliptic boundary conditions

Theorem (existence smooth solutions with elliptic boundary conditions Bell )

- M = R× Σ globally hyperbolic with timelike boundary and ∂Σ compact

- D is a Dirac operator with self-adjoint elliptic boundary condition Bell

There exists a unique smooth solutions to the Cauchy problem.

Sketch of the proof

- By finite speed of propagation in the bulk, Σ can be chosen compact

- Sobolev-like spaces H∞bc(E |Σt ) :=
⋂

k

(
Hk

bc(E |Σt ) := dom〈Hell (t)2 + 1〉
k
2
)
⊂ Γ(E)

- Mollifier Jε(t) := exp[−ε〈Hell (t)2 + 1〉] : H∞bc(E |Σt )→ H∞bc(E |Σt )

- Existence of unique solution of regularized equation ı∇∂t Ψ(ε) = Jε(t)Hell (t)Jε(t)Ψ(ε) + f ,

- Estimates (⇒ equicontinuity) + Ascoli-Arzela (⇒ relatively compactness) + diag. subseq. arg.

{Ψ(ε)}ε>0 ⊃ {Ψ(εj )}j∈N
j→+∞−−−−→ Ψ ∈ C1(R,H∞bc(E |Σt )) and satisfies ı∇∂t Ψ = HellΨ + f

- By showing that also ∇∂t Ψ ∈ C0(R,H∞bc(E |Σt )) and iterating, we can conclude.
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Outlook

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

well-posedness of the Cauchy problem for

X Dirac operator with self-adjoint elliptic b. c. (Nicolò Drago & Nadine Große)

e.g. classical Dirac operator with APS boundary condition

X Symmetric hyperbolic systems with admissible boundary condition (Nicolas Ginoux)

e.g. Wave equation with Neumann and transparent boundary condition

e.g. Classical Dirac operator with MIT boundary conditions

What comes next?

? De Rham-d’Alembert operator (with Nicolas Ginoux)

? Dirac type-operator with general elliptic boundary condition

THANKS for your attention!
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