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Motivations

2 for a deeper understanding

“What is a QFT mathematical axioms for QF T

Locally covariant QFT
v 2A: Loc — Alg
- Locality if f: M1 — My = f: A(M1) = A(M2) injective
- Causality: if M1 ‘i> M <£> Mo caus. disjoint = [f1.A(M31), f2.A4(M2)] =0
- Time-Slice axiom: if f : M1 — M s.t. f(M1) D X = § is isomorphism
v w: A(M) — C s.t. positive w(a*a) > 0 and normalized w(14) =1
{ natural state ? Mj <£> M ‘g Mz = wpy 0f2 =wam = Wty ©f1
¢ scalarQFT: C. J. Fewster and R. Verch - Annales Henri Poincare 13 (2012)

Goals:

1) investigate ‘natural state’ in Topological QFT
2) realize a suitable construction for Dirac fields
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Outline of the Talk

o Natural states for Abelian Chern-Simons theory
@ Algebraic approach to quantum Dirac fields

@ Quantum states for Rindler spacetimes

Based on:

» C. Dappiaggi, S.M., A. Schenkel - J. Geom. Phys. 116 (2017)
» F. Finster, S.M., C. Réken - to appear on J. Math. Anal. Appl. (2017)

» My Ph.D. Thesis
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PART I:

Natural States for
Chern-Simons Theory
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Natural States for Chern-Simons Theory

Classical observables for Abelian Chern-Simons theory

[C. Dappiaggi, S. M. and A. Schenkel: ... natural states for Abelian Chern-Simons theory -
Journal of Geometry and Physics 116 (2017).]

@ We consider M ~ R x X oriented and with dimX =2
@ The action of Abelian Chern-Simons theory
1 S 1

= A A = — = _—dA
S 47F/M NdA = 0 5A 27Td

@ The moduli space of flat U(1)-connection:

e Q4M) _ HAMR) _ HMTR) _ Q4(F)
MO T ey T H(MZ) T HI(%Z) T QL(T)

@ As classical osservables we take all group characters:= Hom (Flaty(y)(X), U(1)):

given any ¢ € QX(X) A — exp (27m/ A A)
b

@ This character descends to the quotient if and only if

group character ~ Hcl(Z;Z) = {[¢] c HCI(Z;R) . / oA Hl(Z) c Z} ~ (ZN(g,p))
X
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Natural States for Chern-Simons Theory

Quantization of Abelian Chern-Simons theory

[C. Dappiaggi, S. M. and A. Schenkel: ... natural states for Abelian Chern-Simons theory -
Journal of Geometry and Physics 116 (2017).]

© We construct a *-algebra A :=span {W, | [¢] € HX(Z; Z)} where W .} satisfy

Wit Wigp = & "D W W™= Weogy, (0] [@D)s = /zwgz

@ We obtain a C*-algebra taking the completion of A with respect to the norm
[la]|™"" := sup v/w(a*a)
weF

where w : A — C is a state, namely w(1a) =1 and w(a*a) > 0.
@ An invariant functional under the action of the symplectic group

1 if [p] =0
o) =t = {3
©

Q: How many invariant states exist on this C*-algebra?
£ Sp(ZVEP 15) ¢ O(ZMEP) | 1), does not exist an invariant Gaussian state

— o HlelleD
w ( VV[SD]) =e
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Natural States for Chern-Simons Theory

Non-existence of natural states

[C. Dappiaggi, S. M. and A. Schenkel: Non-existence of natural states for Abelian Chern-Simons
theory - Journal of Geometry and Physics 116 (2017).]

Theorem

There exists no natural state for the functor A : Man, — CAlg, namely a state for each
Y such that for all Mana-morphisms f : ¥ — ¥’ holds true:

Wy O A(f) = Wy
Sketch of the proof

@ Let us assume that there exists a natural state {ws }reman

@ Consider the Many-diagram: 2L RxS -2 T2
@ The naturality of the state implies: wez 0 A(f) = wpys = w2 0 A(f2)
@ Because of HZ(S?;Z) = 0, then A(S?) ~ C and hence wg = idc is unique on C

@ We can choose f; such that WE*T VV&T:O) we obtain that sz(VV(fO)) =1

. 2 2 .
Choosing a = a1 1+ a2 VV&I) +as VV(EJ) € A(T?) the functional wy2(a*a) < 0
Q.E.D
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Natural States for Chern-Simons Theory

First conclusion and new goal!

Locally covariant QFT: Loc — Alg

v’ Locality v' Causality v Time-Slice axiom

A0 A 4

¢ natural state wp, © f2 7# waty O f1

My U ’f%/ Mo

GOAL: construct w non-locally determined by the geometry
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PART Il:

Quasifree States for
CAR Algebras
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Spin geometry on globally hyperbolic spacetimes

@ M ~ R x X is 4-dim globally hyperbolic spacetime
ds* = B?dt* — h;; B e C°(M;R") and h: € Riem(X);Vt € R

@ Spinor bundle SM and cospinor bundle 5* M
SM~ MxC* A S*M ~ M x (CH*

@ Spin product < - | - >=,: [(SM) x (SM) = C
<0 | = ((A)D) ().

@ Scalar products for spinor (- | -)) and cospinor fields (- | -)(©)
C1990= [<pmar (199 [ <A paton ax
x z
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Algebraic approach to quantum Dirac fields

x-algebras and quasifree states

[H. Araki: On quasifree states of CAR and Bogoliubov automorphisms - Publ. Res. Inst. Math.
Sci. Kyoto 6 (1971). |

o INGREDIENTS:
- Hilbert space /7
- Anti-unitary involution T : 7 — # eT2=1Id e (Tf|Tg)=(g]|f)
Definition
@ A CAR algebra A over (7, T) is a x-algebra generated by B(f), B(f)" and 1.4:
1) B(f) is (complex) linear in f
2) B(f)* = B(Tf)
3) B(f)B(g)" + B(g)"B(f) = (f | &) 1a
@ Quasifree state w : A — C linear

w(B(f)'B(f)) >0 e w(la)=1 & wa((B(A) - B(fnn1)) =

o wan((B(f) -+ B(fn)) = > (-1)7%" “’H w2 (B(fr2i-1)) B(fo2i))

c€eSss,

S v T — AL Field Theor:
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Algebraic approach to quantum Dirac fields

Characterization of quasifree states

Lemma (H. Araki: On quasifree states of CAR and Bogoliubov automorphisms.)
Let T be an involution on # and Q be a bounded, symmetric operator on 7
(@) QR+TQRT=1Id b)0<R=Q"<1

Then there exists a unique quasifree state w on A such that

w2(B(f")B(g)) = (f | Qg)
Proposition 1 (N. Drago and S. M.: arXiv:1607.02909)
- 4dim-Globally hyperbolic spacetime M =R x X and (co)spinor SOM =M xC*

- Hilbert spaces 7#*° = (C&£(M,SM),( | )y ) and 2 = (C2(M,S5*M),( | )5 )
- Adjunction map A: #° — ¢

- Orthonormal projector 1 on J#°

Then setting # 1= #° & #° — P :=Na (Id — ANA™") satisfies (a) and (b)
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PART Ill:

Quantum States in
Rindler Spacetime
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Quantum states in Rindler spacetime

Quantum states in Rindler spacetime - |

[F. Finster, S. M. and C. Réken: The fermionic signature operator and quantum states in Rindler
space-time - to appear on Journal of Mathematical Analysis and Applications (2017).]

S v — AL Field Theor:

R ={(t,x) € RV with |t| < x} with element line ds*> = dt* — dx®

Rindler coordinates:

{

t =E&sinhT
x = &coshr

= ds® =¢&dr? - d¢?

y-matrices: {7%,7°} = 2g% 12

Dirac operator: D = in°d; + iv'dx — 1gam

Solution space of Dirac equation

Sol(D) := {1 € T(SR)| Dy =0}

Hilbert space 77 = m

scalar product (- | ) :== [° <+ | 7% = dx
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Quantum states in Rindler spacetime

Quantum states in Rindler spacetime - |l

[F. Finster, S. M. and C. Réken: The fermionic signature operator and quantum states in Rindler
space-time - to appear on Journal of Mathematical Analysis and Applications (2017).]

Theorem 1

@ Vi € A, Ic = c(v) s.t. for every ¢ € A .

[(o10)|=| [ <015 aia| < ety o)

@ Fermionic signature operator S : D(S) C /0 —
(v19)=(v|sP)
N.B.: S is densely defined, symmetric and unbounded.

@ S has unique self adjoint extensions and o(S) = R

Nt

@ Fermionic projector I := X(0,+00)(S) <= quasifree state wrp : A — C

S v — AL Field Theor:
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Quantum states in Rindler spacetime

Quantum states in Rindler spacetime - |lI

[F. Finster, S. M. and C. Réken: The fermionic signature operator and quantum states in Rindler
space-time - to appear on Journal of Mathematical Analysis and Applications (2017).]

@ In the coordinates (7, &), the Dirac equation takes the Hamiltonian form

i07) = Hip

Theorem 2

o InR?={(t,x) e R with |t| < x}

. Lo H
(i) fermionic signature operator: & = ——

(ii) ground state: x(S) = x(H) o

o InR* = {(t,x,y,z) € RM with [t] <x}

N

(i) fermionic signature operator:
1 1 01,2 3
so L (ko)
Py 5 17 (Y0 +7°0:)
(ii) quasifree state: x(S) # x(H)
(iphysical interpretation?)

S v — AL Field Theor:
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Are all states physically acceptable?
Of course not! Minimal requirements are:
i) covariant construction of Wick polynomials to deal with interactions,

ii) same UV behavior of the Minkowski vacuum,

iii) finite quantum fluctuations of all observables.

Answer: Hadamard States

A (quasifree) state w satisfies the Hadamard condition if and only if
WF(w2) = {(x,y,60,6) € T"MP\0 [ (x,&) ~ (v, =), &0}

Question: How many Hadamard states do we know?

- deformation arguments (existence) - S. A. Fulling, F. J. Narcowich, R. M. Wald

static or highly symmetric spacetimes - H. Sahlmann, R. Verch, K. Fredenhagen, ...

Asymptotically flat spacetimes - C. Dappiaggi, V. Moretti , S.M., N. Pinamonti, ...
- Minkowski with external potential - F.Finster, S.M., C. Réken
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Conclusions: THANK YOU for your attention!

What we “learn™
@ The construction of a state should be determined non-locally by the geometry
@ With every self-adjoint operator we can construct a quasifree state

@ We could represent sesquilinear pairings to obtain self-adjoint operators

Benefit:

v The construction of the fermionic projector work without symmetries

Flaws:

¢ The construction of the fermionic projector works only for massive fields
Possible future investigation:

i Does the state in 4-dim Rindler satisfy the Hadamard condition ?

¢ Can we generalize this construction to integer spin particles?

i What do we obtain by applying this construction to time-depend models?
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