Looking at the quantum states with the eyes of algebraic quantum field theory

Simone Murro

Department of Mathematics University of Regensburg

Rome, 3rd of May 2017

Motivations

" What is a QFT? " $\xrightarrow{\text{for a deeper understanding}}$ mathematical axioms for QFT

Locally covariant QFT

- $\checkmark \mathfrak{A} : \mathsf{Loc} \to \mathsf{Alg}$
 - Locality if $f: \mathcal{M}_1 \hookrightarrow \mathcal{M}_2 \Longrightarrow \mathfrak{f}: \mathcal{A}(\mathcal{M}_1) \to \mathcal{A}(\mathcal{M}_2)$ injective
 - Causality: if $\mathcal{M}_1 \overset{f_1}{\hookrightarrow} \mathcal{M} \overset{f_2}{\longleftrightarrow} \mathcal{M}_2$ caus. disjoint $\Longrightarrow [\mathfrak{f}_1 \mathcal{A}(\mathcal{M}_1), \mathfrak{f}_2 \mathcal{A}(\mathcal{M}_2)] = 0$
 - Time-Slice axiom: if $f: \mathcal{M}_1 \to \mathcal{M}_2$ s.t. $f(\mathcal{M}_1) \supset \Sigma_2 \Longrightarrow \mathfrak{f}$ is isomorphism
- \checkmark $\omega:\mathcal{A}(\mathcal{M}) o\mathbb{C}$ s.t. positive $\omega(a^*a)\geq 0$ and normalized $\omega(1_\mathcal{A})=1$
 - i natural state ? $\mathcal{M}_1 \overset{f_1}{\longleftrightarrow} \mathcal{M} \overset{f_2}{\hookrightarrow} \mathcal{M}_2 \Rightarrow \omega_{\mathcal{M}_2} \circ f_2 = \omega_{\mathcal{M}} = \omega_{\mathcal{M}_1} \circ f_1$
 - f scalarQFT: C. J. Fewster and R. Verch Annales Henri Poincare 13 (2012)

Goals:

- 1) investigate 'natural state' in Topological QFT
- 2) realize a suitable construction for Dirac fields

Outline of the Talk

- Natural states for Abelian Chern-Simons theory
- Algebraic approach to quantum Dirac fields
- Quantum states for Rindler spacetimes

Based on:

- ► C. Dappiaggi, S.M., A. Schenkel J. Geom. Phys. 116 (2017)
- ▶ F. Finster, S.M., C. Röken to appear on J. Math. Anal. Appl. (2017)
- My Ph.D. Thesis

PART I:

Natural States for Chern-Simons Theory

Classical observables for Abelian Chern-Simons theory

[C. Dappiaggi, S. M. and A. Schenkel: ... natural states for Abelian Chern-Simons theory - Journal of Geometry and Physics 116 (2017).]

- We consider $\mathcal{M} \simeq \mathbb{R} \times \Sigma$ oriented and with dim $\Sigma = 2$
- The action of Abelian Chern-Simons theory

$$S = \frac{1}{4\pi} \int_{M} A \wedge dA \quad \Rightarrow \quad 0 = \frac{\delta S}{\delta A} = \frac{1}{2\pi} dA$$

• The moduli space of flat U(1)-connection:

$$\mathsf{Flat}_{\mathit{U}(1)} := \frac{\Omega^1_{\mathit{d}}(\mathit{M})}{\Omega^1_{\mathbb{Z}}(\mathit{M})} \simeq \frac{\mathit{H}^1(\mathit{M};\mathbb{R})}{\mathit{H}^1(\mathit{M};\mathbb{Z})} \simeq \frac{\mathit{H}^1(\Sigma;\mathbb{R})}{\mathit{H}^1(\Sigma;\mathbb{Z})} \simeq \frac{\Omega^1_{\mathit{d}}(\Sigma)}{\Omega^1_{\mathbb{Z}}(\Sigma)}$$

• As classical osservables we take all group characters := $\mathsf{Hom}(\mathsf{Flat}_{U(1)}(\Sigma),U(1))$:

given any
$$\varphi \in \Omega^1_c(\Sigma)$$
 $A \mapsto \exp\left(2\pi i \int_{\Sigma} \varphi \wedge A\right)$

• This character descends to the quotient if and only if

$$\text{group character} \simeq \textit{H}^1_c(\Sigma;\mathbb{Z}) := \left\{ [\varphi] \in \textit{H}^1_c(\Sigma;\mathbb{R}) : \int_{\Sigma} \varphi \wedge \textit{H}^1(\Sigma) \subseteq \mathbb{Z} \right\} \simeq \left(\mathbb{Z}^{\textit{N}(g,p)} \right)$$

Quantization of Abelian Chern-Simons theory

[C. Dappiaggi, S. M. and A. Schenkel: ... natural states for Abelian Chern-Simons theory - Journal of Geometry and Physics 116 (2017).]

• We construct a *-algebra $\Delta :=$ span $\{W_{[\varphi]} \mid [\varphi] \in H^1_c(\Sigma; \mathbb{Z})\}$ where $W_{[\cdot]}$ satisfy

• We obtain a C^* -algebra taking the completion of Δ with respect to the norm

$$||a||^{m.r.n} := \sup_{\omega \in \mathcal{F}} \sqrt{\omega(a^*a)}$$

where $\omega: \Delta \to \mathbb{C}$ is a state, namely $\omega(1_{\Delta}) = 1$ and $\omega(a^*a) \geq 0$.

• An invariant functional under the action of the symplectic group

$$\omegaig(W_{\mathcal{T}[arphi]}ig) = \omegaig(W_{[arphi]}ig) := egin{cases} 1 & \text{if } [arphi] = 0 \\ \mathcal{K}_{[arphi]} & \text{else} \end{cases}$$

Q: How many invariant states exist on this C^* -algebra?

 $f \operatorname{\mathsf{Sp}}(\mathbb{Z}^{N(g,p)}, au_{\Sigma}) \not\subset \operatorname{\mathsf{O}}(\mathbb{Z}^{N(g,p)}, \mu)$, does not exist an invariant Gaussian state

$$\omega(W_{[\varphi]}) = e^{-\mu([\varphi],[\varphi])}$$

Non-existence of natural states

[C. Dappiaggi, S. M. and A. Schenkel: *Non-existence of natural states for Abelian Chern-Simons theory -* Journal of Geometry and Physics **116** (2017).]

Theorem

There exists *no natural state* for the functor $\mathcal{A}:\mathsf{Man}_2\to\mathsf{CAlg}$, namely a state for each Σ such that for all $\mathsf{Man}_2 ext{-morphisms } f:\Sigma\to\Sigma'$ holds true:

$$\omega_{\Sigma'} \circ \mathcal{A}(f) = \omega_{\Sigma}$$

Sketch of the proof

- Let us assume that there exists a natural state $\{\omega_{\Sigma}\}_{\Sigma\in\mathsf{Man}}$
- Consider the Man₂-diagram:

$$\mathbb{S}^2 \xleftarrow{f_1} \mathbb{R} \times \mathbb{S} \xrightarrow{f_2} \mathbb{T}^2$$

• The naturality of the state implies:

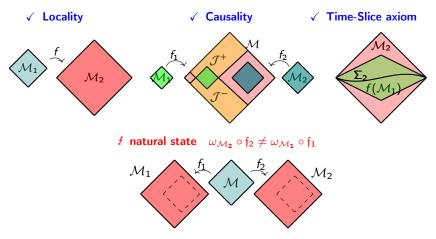
$$\omega_{\mathbb{S}^2} \circ \mathcal{A}(f_1) = \omega_{\mathbb{R} \times \mathbb{S}} = \omega_{\mathbb{T}^2} \circ \mathcal{A}(f_2)$$

- $\bullet \ \, \text{Because of} \,\, H^1_c(\mathbb{S}^2;\mathbb{Z}) = 0, \, \text{then} \,\, \mathcal{A}(\mathbb{S}^2) \simeq \mathbb{C} \,\, \text{and hence} \,\, \omega_{\mathbb{S}^2} = \mathrm{id}_{\mathbb{C}} \,\, \mathrm{is} \,\, \mathrm{unique} \,\, \mathrm{on} \,\, \mathbb{C}$
- We can choose f_2 such that $W_n^{\mathbb{R} imes \mathbb{T}} \mapsto W_{(n,0)}^{\mathbb{T}^2}$ we obtain that $\omega_{\mathbb{T}^2} \big(W_{(n,0)}^{\mathbb{T}^2} \big) = 1$
- Choosing $a=\alpha_1\,1+\alpha_2\,W_{(1,1)}^{\mathbb{T}^2}+\alpha_3\,W_{(0,1)}^{\mathbb{T}^2}\in\mathcal{A}(\mathbb{T}^2)$ the functional $\omega_{\mathbb{T}^2}(a^*a)<0$

Q.E.D

First conclusion and new goal!

Locally covariant QFT: Loc → Alg



GOAL: construct ω non-locally determined by the geometry

PART II:

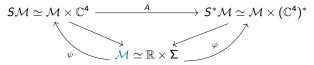
Quasifree States for CAR Algebras

Spin geometry on globally hyperbolic spacetimes

• $\mathcal{M} \simeq \mathbb{R} \times \Sigma$ is 4-dim globally hyperbolic spacetime

$$ds^2 = \beta^2 dt^2 - h_t; \quad \beta \in C^{\infty}(M; \mathbb{R}^+) \text{ and } h_t \in \mathsf{Riem}(\Sigma); \forall t \in \mathbb{R}$$

Spinor bundle SM and cospinor bundle S*M



• Spin product $\prec \cdot \mid \cdot \succ_x : \Gamma(S\mathcal{M}) \times \Gamma(S\mathcal{M}) \to \mathbb{C}$

$$\prec \psi \mid \widetilde{\psi} \succ_{\mathsf{x}} := ((A\psi)\widetilde{\psi})(\mathsf{x}).$$

• Scalar products for spinor $(\cdot \mid \cdot)^{(s)}$ and cospinor fields $(\cdot \mid \cdot)^{(c)}$

$$(\cdot \mid \cdot)^{(s)} \doteq \int_{\Sigma} \prec \cdot \mid \psi \cdot \succ_{\times} d\Sigma \qquad (\cdot \mid \cdot)^{(c)} \doteq \int_{\Sigma} \prec A^{-1} \cdot \mid \psi A^{-1} \cdot \succ_{\times} d\Sigma$$

*-algebras and quasifree states

[H. Araki: On quasifree states of CAR and Bogoliubov automorphisms - Publ. Res. Inst. Math. Sci. Kyoto 6 (1971).]

- INGREDIENTS:
 - Hilbert space ${\mathscr H}$
 - Anti-unitary involution $\Upsilon: \mathscr{H} \to \mathscr{H}$ $\bullet \Upsilon^2 = Id$ $\bullet (\Upsilon f \mid \Upsilon g) = (g \mid f)$

Definition

- A CAR algebra \mathcal{A} over (\mathcal{H}, Υ) is a *-algebra generated by $\mathcal{B}(f)$, $\mathcal{B}(f)^*$ and $1_{\mathcal{A}}$:
 - 1) B(f) is (complex) linear in f
 - 2) $B(f)^* = B(\Upsilon f)$
 - 3) $B(f)B(g)^* + B(g)^*B(f) = (f \mid g) 1_A$
- Quasifree state $\omega: \mathcal{A} \to \mathbb{C}$ linear
 - $\omega(B(f)^*B(f)) \geq 0$ $\omega(1_A) = 1$ $\omega_{2n+1}((B(f_1)\cdots B(f_{2n+1})) = 0$
 - $\bullet \ \omega_{2n}\big((B(f_1)\cdots B(f_{2n})\big) = \sum_{\sigma \in S_n'} (-1)^{\operatorname{sign}(\sigma)} \prod_{i=1}^n \ \omega_2\big(B(f_{\sigma(2i-1)})B(f_{\sigma(2i)})\big)$

Characterization of quasifree states

Lemma (H. Araki: On quasifree states of CAR and Bogoliubov automorphisms.)

Let Υ be an involution on \mathscr{H} and Q be a **bounded, symmetric operator** on \mathscr{H}

(a)
$$Q + \Upsilon Q \Upsilon = Id$$
 (b) $0 \le Q = Q^* \le 1$

(b)
$$0 \le Q = Q^* \le$$

Then there exists a unique quasifree state ω on \mathcal{A} such that

$$\omega_2\big(B(f^*)B(g)\big)=(f\mid Qg)$$

Proposition 1 (N. Drago and S. M.: arXiv:1607.02909)

- 4dim-Globally hyperbolic spacetime $\mathcal{M}=\mathbb{R} imes \Sigma$ and (co)spinor $S^{(*)}\mathcal{M}=\mathcal{M} imes \mathbb{C}^4$
- Hilbert spaces $\mathscr{H}^s = (C_{sc}^{\infty}(\mathcal{M}, S\mathcal{M}), (\mid)_{\tau})$ and $\mathscr{H}^c = (C_{sc}^{\infty}(\mathcal{M}, S^*\mathcal{M}), (\mid)_{\tau})$
- Adjunction map $A: \mathcal{H}^s \to \mathcal{H}^c$
- Orthonormal projector Π on ℋ^s

Then setting $\mathcal{H} := \mathcal{H}^s \oplus \mathcal{H}^c \implies P := \Pi \oplus (Id - A\Pi A^{-1})$ satisfies (a) and (b)

PART III:

Quantum States in Rindler Spacetime

Quantum states in Rindler spacetime - I

[F. Finster, S. M. and C. Röken: The fermionic signature operator and quantum states in Rindler space-time - to appear on Journal of Mathematical Analysis and Applications (2017).]

$$\mathcal{R} = \left\{ (t, x) \in \mathbb{R}^{1,1} \mid \text{with} \mid |t| < x \right\}$$
 with element line $ds^2 = dt^2 - dx^2$

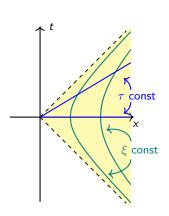
Rindler coordinates:

$$\begin{cases} t = \xi \sinh \tau \\ x = \xi \cosh \tau \end{cases} \Rightarrow ds^2 = \xi^2 d\tau^2 - d\xi^2$$

- ullet γ -matrices: $\{\gamma^{a},\gamma^{b}\}=2g^{ab}\,1_{\mathbb{C}^{2}}$
- Dirac operator: $\mathcal{D} = i\gamma^0 \partial_t + i\gamma^1 \partial_x 1_{\mathbb{C}^2} m$
- Solution space of Dirac equation

$$Sol(\mathcal{D}) := \{ \psi \in \Gamma_{sc}(S\mathcal{R}) \, | \, \mathcal{D}\psi = 0 \, \}$$

- Hilbert space $\mathscr{H} := \overline{(\mathcal{S}ol(\mathcal{D}), (\cdot \mid \cdot))}$
- scalar product $(\cdot \mid \cdot) := \int_0^\infty \langle \cdot \mid \gamma^0 \rangle \rangle dx$



Quantum states in Rindler spacetime - II

[F. Finster, S. M. and C. Röken: *The fermionic signature operator and quantum states in Rindler space-time* - to appear on Journal of Mathematical Analysis and Applications (2017).]

Theorem 1

• $\forall ilde{\psi} \in \mathscr{H}$, $\exists c = c(ilde{\psi})$ s.t. for every $\psi \in \mathscr{H}$.

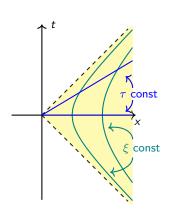
$$\left|\left\langle \psi \mid \tilde{\psi} \right\rangle \right| \doteq \left| \int_{\mathcal{R}} \prec \psi \mid \tilde{\psi} \succ \textit{dtdx} \right| \leq \textit{c}(\tilde{\psi}) \, \|\psi\|$$

• Fermionic signature operator $\mathcal{S}: \mathcal{D}(\mathcal{S}) \subset \mathscr{H} \to \mathscr{H}$

$$\left\langle \psi \mid \tilde{\psi} \right\rangle = \left(\psi \mid \mathcal{S}\tilde{\psi} \right)$$

N.B.: S is densely defined, symmetric and unbounded.

- S has unique self adjoint extensions and $\sigma(S) = \mathbb{R}$
- Fermionic projector $\Pi := \chi_{(0,+\infty)}(S) \iff$ quasifree state $\omega_{FP} : \mathcal{A} \to \mathbb{C}$



Quantum states in Rindler spacetime - III

[F. Finster, S. M. and C. Röken: *The fermionic signature operator and quantum states in Rindler space-time* - to appear on Journal of Mathematical Analysis and Applications (2017).]

ullet In the coordinates (au, ξ) , the Dirac equation takes the *Hamiltonian* form

$$i\partial_{\tau}\psi = \mathbf{H}\psi$$

Theorem 2

• In
$$\mathcal{R}^2 = \left\{ (t, x) \in \mathbb{R}^{1,1} \text{ with } |t| < x \right\}$$

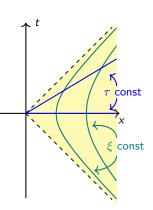
- (i) fermionic signature operator: $S = -\frac{H}{\pi m}$
- (ii) ground state: $\chi(S) = \chi(H)$

• In
$$\mathcal{R}^4 = \left\{ (t, x, y, z) \in \mathbb{R}^{1,3} \text{ with } |t| < x \right\}$$

(i) fermionic signature operator:

$$\mathcal{S} = -\frac{1}{\pi\sqrt{\textit{m}^2 + \textit{k}_y^2 + \textit{k}_z^2}} \Big(\mathsf{H} + \frac{1}{2\textit{m}} \; \gamma^0 \gamma^1 \big(\gamma^2 \partial_y + \gamma^3 \partial_z \big) \Big)$$

(ii) quasifree state: $\chi(S) \neq \chi(H)$ (*j* physical interpretation?)



Are all states physically acceptable?

Of course not! Minimal requirements are:

- i) covariant construction of Wick polynomials to deal with interactions,
- ii) same UV behavior of the Minkowski vacuum,
- iii) finite quantum fluctuations of all observables.

Answer: Hadamard States

 \bullet A (quasifree) state ω satisfies the **Hadamard condition** if and only if

$$WF(\omega_2) = \{(x, y, \xi_x, \xi_y) \in T^*M^{\otimes 2} \setminus 0 \mid (x, \xi_x) \sim (y, -\xi_y), \quad \xi_x \triangleright 0\}$$

Question: How many Hadamard states do we know?

- deformation arguments (existence) S. A. Fulling, F. J. Narcowich, R. M. Wald
- static or highly symmetric spacetimes H. Sahlmann, R. Verch, K. Fredenhagen, ...
- Asymptotically flat spacetimes C. Dappiaggi, V. Moretti , S.M., N. Pinamonti, ...
- Minkowski with external potential F.Finster, S.M., C. Röken

Conclusions: THANK YOU for your attention!

What we "learn".

- The construction of a state should be determined non-locally by the geometry
- With every self-adjoint operator we can construct a quasifree state
- We could represent sesquilinear pairings to obtain self-adjoint operators

Benefit:

√ The construction of the fermionic projector work without symmetries

Flaws:

* The construction of the fermionic projector works only for massive fields

Possible future investigation:

- ¿ Does the state in 4-dim Rindler satisfy the Hadamard condition ?
- ¿ Can we generalize this construction to integer spin particles?
- ; What do we obtain by applying this construction to time-depend models?